166 research outputs found
Complete devil's staircase and crystal--superfluid transitions in a dipolar XXZ spin chain: A trapped ion quantum simulation
Systems with long-range interactions show a variety of intriguing properties:
they typically accommodate many meta-stable states, they can give rise to
spontaneous formation of supersolids, and they can lead to counterintuitive
thermodynamic behavior. However, the increased complexity that comes with
long-range interactions strongly hinders theoretical studies. This makes a
quantum simulator for long-range models highly desirable. Here, we show that a
chain of trapped ions can be used to quantum simulate a one-dimensional model
of hard-core bosons with dipolar off-site interaction and tunneling, equivalent
to a dipolar XXZ spin-1/2 chain. We explore the rich phase diagram of this
model in detail, employing perturbative mean-field theory, exact
diagonalization, and quasiexact numerical techniques (density-matrix
renormalization group and infinite time evolving block decimation). We find
that the complete devil's staircase -- an infinite sequence of crystal states
existing at vanishing tunneling -- spreads to a succession of lobes similar to
the Mott-lobes found in Bose--Hubbard models. Investigating the melting of
these crystal states at increased tunneling, we do not find (contrary to
similar two-dimensional models) clear indications of supersolid behavior in the
region around the melting transition. However, we find that inside the
insulating lobes there are quasi-long range (algebraic) correlations, opposed
to models with nearest-neighbor tunneling which show exponential decay of
correlations
Defining a Cutoff for Progression of Macular Holes.
PurposeThe purpose of this study was to determine a cutoff for progression of idiopathic full-thickness macular hole (MH) size.MethodsRetrospective analysis of consecutive patients waiting 4 weeks for MH surgery. Two observers performed 3 repeat sets of MH size measurements on optical coherence tomography (OCT) high-density radial scans taken at first presentation and 4 weeks later before surgery. Primary outcome was the definition of a cutoff for true enlargement of MH size versus measurement error. Secondary outcomes were risk factors for change in minimum linear diameter (MLD) size and best-corrected visual acuity (BCVA).ResultsFifty-one patients were included with a mean MH size of 334 ”m (±179 ”m; range 39 to 793 ”m). The cutoff for an increase in MLD size calculated as the outer confidence limit for the 99.73% limits of agreement was 31 ”m. This was independent of MH size. Using this cutoff, MLD size increased in 9/34 (26.5%) of patients without and in 14 of 17 (82.4%) of patients with vitreomacular traction (VMT; P 400 ”m) changed over the 4-week period.ConclusionsUsing a cutoff discriminates change from measurement error. A significant proportion of MHs progressed by 4 weeks, particularly in the presence of VMT.Translational relevanceThe established cutoff enables clinicians to differentiate true MH enlargement from measurement error
Methods for direct determination of mitomycin C in aqueous solutions and in urine
Stripping voltammetry (SV) is used to quantitatively determine concentrations of the anti-neoplastic drug mitomycin C (MMC) alone and in mixtures with 5-fluorouracil and cisplatin, both of which are used in combined chemotherapy with MMC. If the accumulation is performed at the potentials of MMC reduction (-0.35 V vs. SCE), reduced MMC is strongly adsorbed at the electrode. It is possible to prepare a MMC-modified electrode, which, after a washing step, is transferred to the background electrolyte to determine MMC by voltammetry. This procedure, which is termed transfer stripping voltammetry (TSV), helps to eliminate interferences and can be applied for a direct determination of MMC alone or in mixtures with other drugs in urine
Deleterious ZNRF3 germline variants cause neurodevelopmental disorders with mirror brain phenotypes via domain-specific effects on Wnt/ÎČ-catenin signaling
Zinc and RING finger 3 (ZNRF3) is a negative-feedback regulator of Wnt/ÎČ-catenin signaling, which plays an important role in human brain development. Although somatically frequently mutated in cancer, germline variants in ZNRF3 have not been established as causative for neurodevelopmental disorders (NDDs). We identified 12 individuals with ZNRF3 variants and various phenotypes via GeneMatcher/Decipher and evaluated genotype-phenotype correlation. We performed structural modeling and representative deleterious and control variants were assessed using in vitro transcriptional reporter assays with and without Wnt-ligand Wnt3a and/or Wnt-potentiator R-spondin (RSPO). Eight individuals harbored de novo missense variants and presented with NDD. We found missense variants associated with macrocephalic NDD to cluster in the RING ligase domain. Structural modeling predicted disruption of the ubiquitin ligase function likely compromising Wnt receptor turnover. Accordingly, the functional assays showed enhanced Wnt/ÎČ-catenin signaling for these variants in a dominant negative manner. Contrarily, an individual with microcephalic NDD harbored a missense variant in the RSPO-binding domain predicted to disrupt binding affinity to RSPO and showed attenuated Wnt/ÎČ-catenin signaling in the same assays. Additionally, four individuals harbored de novo truncating or de novo or inherited large in-frame deletion variants with non-NDD phenotypes, including heart, adrenal, or nephrotic problems. In contrast to NDD-associated missense variants, the effects on Wnt/ÎČ-catenin signaling were comparable between the truncating variant and the empty vector and between benign variants and the wild type. In summary, we provide evidence for mirror brain size phenotypes caused by distinct pathomechanisms in Wnt/ÎČ-catenin signaling through protein domain-specific deleterious ZNRF3 germline missense variants
Real-life disease monitoring in follicular lymphoma patients using liquid biopsy ultra-deep sequencing and PET/CT
In the present study, we screened 84 Follicular Lymphoma patients for somatic mutations suitable as liquid biopsy MRD biomarkers using a targeted next-generation sequencing (NGS) panel. We found trackable mutations in 95% of the lymph node samples and 80% of the liquid biopsy baseline samples. Then, we used an ultra-deep sequencing approach with 2 · 10â4 sensitivity (LiqBio-MRD) to track those mutations on 151 follow-up liquid biopsy samples from 54 treated patients. Positive LiqBio-MRD at first-line therapy correlated with a higher risk of progression both at the interim evaluation (HRINT 11.0, 95% CI 2.10â57.7, pâ=â0.005) and at the end of treatment (HREOT, HR 19.1, 95% CI 4.10â89.4, pâ<â0.001). Similar results were observed by PET/CT Deauville score, with a median PFS of 19 months vs. NR (pâ<â0.001) at the interim and 13 months vs. NR (pâ<â0.001) at EOT. LiqBio-MRD and PET/CT combined identified the patients that progressed in less than two years with 88% sensitivity and 100% specificity. Our results demonstrate that LiqBio-MRD is a robust and non-invasive approach, complementary to metabolic imaging, for identifying FL patients at high risk of failure during the treatment and should be considered in future response-adapted clinical trials.This study has been funded by Instituto de Salud Carlos III (ISCIII) and co-funded by the European Union through the projects PI21/00314, PI19/01430, PI19/01518 and PI18/00295, PTQ2020-011372, CP19/00140, CP22/00082, Doctorado industrial CAM IND2020/TIC-17402 and CRIS cancer foundation
The OSCAR-MP Consensus Criteria for Quality Assessment of Retinal Optical Coherence Tomography Angiography
Background and Objectives
Optical coherence tomography angiography (OCTA) is a noninvasive high-resolution imaging technique for assessing the retinal vasculature and is increasingly used in various ophthalmologic, neuro-ophthalmologic, and neurologic diseases. To date, there are no validated consensus criteria for quality control (QC) of OCTA. Our study aimed to develop criteria for OCTA quality assessment.
Methods
To establish criteria through (1) extensive literature review on OCTA artifacts and image quality to generate standardized and easy-to-apply OCTA QC criteria, (2) application of OCTA QC criteria to evaluate interrater agreement, (3) identification of reasons for interrater disagreement, revision of OCTA QC criteria, development of OCTA QC scoring guide and training set, and (4) validation of QC criteria in an international, interdisciplinary multicenter study.
Results
We identified 7 major aspects that affect OCTA quality: (O) obvious problems, (S) signal strength, (C) centration, (A) algorithm failure, (R) retinal pathology, (M) motion artifacts, and (P) projection artifacts. Seven independent raters applied the OSCAR-MP criteria to a set of 40 OCTA scans from people with MS, Sjogren syndrome, and uveitis and healthy individuals. The interrater kappa was substantial (Îș 0.67). Projection artifacts were the main reason for interrater disagreement. Because artifacts can affect only parts of OCTA images, we agreed that prior definition of a specific region of interest (ROI) is crucial for subsequent OCTA quality assessment. To enhance artifact recognition and interrater agreement on reduced image quality, we designed a scoring guide and OCTA training set. Using these educational tools, 23 raters from 14 different centers reached an almost perfect agreement (Îș 0.92) for the rejection of poor-quality OCTA images using the OSCAR-MP criteria.
Discussion
We propose a 3-step approach for standardized quality control: (1) To define a specific ROI, (2) to assess the occurrence of OCTA artifacts according to the OSCAR-MP criteria, and (3) to evaluate OCTA quality based on the occurrence of different artifacts within the ROI. OSCAR-MP OCTA QC criteria achieved high interrater agreement in an international multicenter study and is a promising QC protocol for application in the context of future clinical trials and studies
The OSCAR-MP Consensus Criteria for Quality Assessment of Retinal Optical Coherence Tomography Angiography
BACKGROUND AND OBJECTIVES: Optical coherence tomography angiography (OCTA) is a noninvasive high-resolution imaging technique for assessing the retinal vasculature and is increasingly used in various ophthalmologic, neuro-ophthalmologic, and neurologic diseases. To date, there are no validated consensus criteria for quality control (QC) of OCTA. Our study aimed to develop criteria for OCTA quality assessment. METHODS: To establish criteria through (1) extensive literature review on OCTA artifacts and image quality to generate standardized and easy-to-apply OCTA QC criteria, (2) application of OCTA QC criteria to evaluate interrater agreement, (3) identification of reasons for interrater disagreement, revision of OCTA QC criteria, development of OCTA QC scoring guide and training set, and (4) validation of QC criteria in an international, interdisciplinary multicenter study. RESULTS: We identified 7 major aspects that affect OCTA quality: (O) obvious problems, (S) signal strength, (C) centration, (A) algorithm failure, (R) retinal pathology, (M) motion artifacts, and (P) projection artifacts. Seven independent raters applied the OSCAR-MP criteria to a set of 40 OCTA scans from people with MS, Sjogren syndrome, and uveitis and healthy individuals. The interrater kappa was substantial (Îș 0.67). Projection artifacts were the main reason for interrater disagreement. Because artifacts can affect only parts of OCTA images, we agreed that prior definition of a specific region of interest (ROI) is crucial for subsequent OCTA quality assessment. To enhance artifact recognition and interrater agreement on reduced image quality, we designed a scoring guide and OCTA training set. Using these educational tools, 23 raters from 14 different centers reached an almost perfect agreement (Îș 0.92) for the rejection of poor-quality OCTA images using the OSCAR-MP criteria. DISCUSSION: We propose a 3-step approach for standardized quality control: (1) To define a specific ROI, (2) to assess the occurrence of OCTA artifacts according to the OSCAR-MP criteria, and (3) to evaluate OCTA quality based on the occurrence of different artifacts within the ROI. OSCAR-MP OCTA QC criteria achieved high interrater agreement in an international multicenter study and is a promising QC protocol for application in the context of future clinical trials and studies
GLRB allelic variation associated with agoraphobic cognitions, increased startle response and fear network activation : a potential neurogenetic pathway to panic disorder
The molecular genetics of panic disorder (PD) with and without agoraphobia (AG) are still largely unknown and progress is hampered by small sample sizes. We therefore performed a genome-wide association study with a dimensional, PD/AG - related anxiety phenotype based on the Agoraphobia Cognition Questionnaire (ACQ) in a sample of 1,370 healthy German volunteers of the CRC TRR58 MEGA study wave 1. A genome-wide significant association was found between ACQ and single non-coding nucleotide variants of the GLRB gene (rs78726293, p=3.3x10-8; rs191260602, p=3.9x10-8). We followed up on this finding in a larger dimensional ACQ sample (N=2,547) and in independent samples with a dichotomous AG phenotype based on the Symptoms Checklist (SCL-90; N=3,845) and a case control sample with the categorical phenotype PD/AG (Ncombined =1,012) obtaining highly significant p-values also for GLRB single nucleotide variants rs17035816 (p=3.8x10-4) and rs7688285 (p=7.6x10-5). GLRB gene expression was found to be modulated by rs7688285 in brain tissue as well as cell culture. Analyses of intermediate PD/AG phenotypes demonstrated increased startle reflex and increased fear network as well as general sensory activation by GLRB risk gene variants rs78726293, rs191260602, rs17035816 and rs7688285. Partial Glrb knockout-mice demonstrated an agoraphobic phenotype. In conjunction withthe clinical observation that rare coding GLRB gene mutations are associated with the neurological disorder hyperekplexia characterized by a generalized startle reaction and agoraphobic behavior, our data provide evidence that non-coding, though functional GLRB gene polymorphisms may predispose to PD by increasing startle response and agoraphobic cognitions.PostprintPeer reviewe
Targeting of PI3K/AKT/mTOR pathway to inhibit T cell activation and prevent graft-versus-host disease development
ProducciĂłn CientĂficaBackground: Graft-versus-host disease (GvHD) remains the major obstacle to successful allogeneic hematopoietic stem cell transplantation, despite of the immunosuppressive regimens administered to control T cell alloreactivity. PI3K/AKT/mTOR pathway is crucial in T cell activation and function and, therefore, represents an attractive therapeutic target to prevent GvHD development. Recently, numerous PI3K inhibitors have been developed for cancer therapy. However, few studies have explored their immunosuppressive effect. Methods: The effects of a selective PI3K inhibitor (BKM120) and a dual PI3K/mTOR inhibitor (BEZ235) on human T cell proliferation, expression of activation-related molecules, and phosphorylation of PI3K/AKT/mTOR pathway proteins were analyzed. Besides, the ability of BEZ235 to prevent GvHD development in mice was evaluated. Results: Simultaneous inhibition of PI3K and mTOR was efficient at lower concentrations than PI3K specific targeting. Importantly, BEZ235 prevented naĂŻve T cell activation and induced tolerance of alloreactive T cells, while maintaining an adequate response against cytomegalovirus, more efficiently than BKM120. Finally, BEZ235 treatment significantly
improved the survival and decreased the GvHD development in mice. Conclusions: These results support the use of PI3K inhibitors to control T cell responses and show the potential utility of the dual PI3K/mTOR inhibitor BEZ235 in GvHD prophylaxis.Asociación Española Contra el Cåncer (Proyecto AIOA110296BLAN).Gerencia Regional de Salud de Castilla y León (Proyecto GRS 726/A13
The German National Registry of Primary Immunodeficiencies (2012-2017)
Introduction: The German PID-NET registry was founded in 2009, serving as the first national registry of patients with primary immunodeficiencies (PID) in Germany. It is part of the European Society for Immunodeficiencies (ESID) registry. The primary purpose of the registry is to gather data on the epidemiology, diagnostic delay, diagnosis, and treatment of PIDs.
Methods: Clinical and laboratory data was collected from 2,453 patients from 36 German PID centres in an online registry. Data was analysed with the software StataÂź and Excel.
Results: The minimum prevalence of PID in Germany is 2.72 per 100,000 inhabitants. Among patients aged 1â25, there was a clear predominance of males. The median age of living patients ranged between 7 and 40 years, depending on the respective PID. Predominantly antibody disorders were the most prevalent group with 57% of all 2,453 PID patients (including 728 CVID patients). A gene defect was identified in 36% of patients. Familial cases were observed in 21% of patients. The age of onset for presenting symptoms ranged from birth to late adulthood (range 0â88 years). Presenting symptoms comprised infections (74%) and immune dysregulation (22%). Ninety-three patients were diagnosed without prior clinical symptoms. Regarding the general and clinical diagnostic delay, no PID had undergone a slight decrease within the last decade. However, both, SCID and hyper IgE- syndrome showed a substantial improvement in shortening the time between onset of symptoms and genetic diagnosis. Regarding treatment, 49% of all patients received immunoglobulin G (IgG) substitution (70%âsubcutaneous; 29%âintravenous; 1%âunknown). Three-hundred patients underwent at least one hematopoietic stem cell transplantation (HSCT). Five patients had gene therapy.
Conclusion: The German PID-NET registry is a precious tool for physicians, researchers, the pharmaceutical industry, politicians, and ultimately the patients, for whom the outcomes will eventually lead to a more timely diagnosis and better treatment
- âŠ