114 research outputs found

    Linguistics

    Get PDF
    Contains reports on one research projects.National Science Foundatio

    A missing dimension in measures of vaccination impacts

    Get PDF
    Immunological protection, acquired from either natural infection or vaccination, varies among hosts, reflecting underlying biological variation and affecting population-level protection. Owing to the nature of resistance mechanisms, distributions of susceptibility and protection entangle with pathogen dose in a way that can be decoupled by adequately representing the dose dimension. Any infectious processes must depend in some fashion on dose, and empirical evidence exists for an effect of exposure dose on the probability of transmission to mumps-vaccinated hosts [1], the case-fatality ratio of measles [2], and the probability of infection and, given infection, of symptoms in cholera [3]. Extreme distributions of vaccine protection have been termed leaky (partially protects all hosts) and all-or-nothing (totally protects a proportion of hosts) [4]. These distributions can be distinguished in vaccine field trials from the time dependence of infections [5]. Frailty mixing models have also been proposed to estimate the distribution of protection from time to event data [6], [7], although the results are not comparable across regions unless there is explicit control for baseline transmission [8]. Distributions of host susceptibility and acquired protection can be estimated from dose-response data generated under controlled experimental conditions [9]–[11] and natural settings [12], [13]. These distributions can guide research on mechanisms of protection, as well as enable model validity across the entire range of transmission intensities. We argue for a shift to a dose-dimension paradigm in infectious disease science and community health

    Anticholinergic drugs and incident dementia, mild cognitive impairment and cognitive decline:a meta-analysis

    Get PDF
    BACKGROUND: the long-term effect of the use of drugs with anticholinergic activity on cognitive function remains unclear. METHODS: we conducted a systematic review and meta-analysis of the relationship between anticholinergic drugs and risk of dementia, mild cognitive impairment (MCI) and cognitive decline in the older population. We identified studies published between January 2002 and April 2018 with ≥12 weeks follow-up between strongly anticholinergic drug exposure and the study outcome measurement. We pooled adjusted odds ratios (OR) for studies reporting any, and at least short-term (90+ days) or long-term (365+ days) anticholinergic use for dementia and MCI outcomes, and standardised mean differences (SMD) in global cognition test scores for cognitive decline outcomes. Statistical heterogeneity was measured using the I2 statistic and risk of bias using ROBINS-I. RESULTS: twenty-six studies (including 621,548 participants) met our inclusion criteria. 'Any' anticholinergic use was associated with incident dementia (OR 1.20, 95% confidence interval [CI] 1.09-1.32, I2 = 86%). Short-term and long-term use were also associated with incident dementia (OR 1.23, 95% CI 1.17-1.29, I2 = 2%; and OR 1.50, 95% CI 1.22-1.85, I2 = 90%). 'Any' anticholinergic use was associated with cognitive decline (SMD 0.15; 95% CI 0.09-0.21, I2 = 3%) but showed no statistically significant difference for MCI (OR 1.24, 95% CI 0.97-1.59, I2 = 0%). CONCLUSIONS: anticholinergic drug use is associated with increased dementia incidence and cognitive decline in observational studies. However, a causal link cannot yet be inferred, as studies were observational with considerable risk of bias. Stronger evidence from high-quality studies is needed to guide the management of long-term use

    JKST6, a novel multikinase modulator of the BCR-ABL1/STAT5 signaling pathway that potentiates direct BCR-ABL1 inhibition and overcomes imatinib resistance in chronic myelogenous leukemia

    Get PDF
    Chronic myelogenous leukemia (CML) is a hematological malignancy that highly depends on the BCR-ABL1/STAT5 signaling pathway for cell survival. First-line treatments for CML consist of tyrosine kinase inhibitors that efficiently target BCR-ABL1 activity. However, drug resistance and intolerance are still therapeutic limitations in Ph+ cells. Therefore, the development of new anti-CML drugs that exhibit alternative mechanisms to overcome these limitations is a desirable goal. In this work, the antitumoral activity of JKST6, a naphthoquinone-pyrone hybrid, was assessed in imatinib-sensitive and imatinib-resistant human CML cells. Live-cell imaging analysis revealed JKST6 potent antiproliferative activity in 2D and 3D CML cultures. JKST6 provoked cell increase in the subG1 phase along with a reduction in the G0/G1 phase and altered the expression of key proteins involved in the control of mitosis and DNA damage. Rapid increases in Annexin V staining and activation/cleavage of caspases 8, 9 and 3 were observed after JKST6 treatment in CML cells. Of interest, JKST6 inhibited BCR-ABL1/STAT5 signaling through oncokinase downregulation that was preceded by rapid polyubiquitination. In addition, JKST6 caused a transient increase in JNK and AKT phosphorylation, whereas the phosphorylation of P38-MAPK and Src was reduced. Combinatory treatment unveiled synergistic effects between imatinib and JKST6. Notably, JKST6 maintained its antitumor efficacy in BCR-ABL1-T315I-positive cells and CML cells that overexpress BCR-ABL and even restored imatinib efficacy after a short exposure time. These findings, together with the observed low toxicity of JKST6, reveal a novel multikinase modulator that might overcome the limitations of BCR-ABL1 inhibitors in CML therapy.This research has been funded by Spanish Ministry of Economy and Competitiveness - MINECO - (SAF 2015–65113-C2–1-R and RTI2018–094356-B-C21 to AEB, SAF2015–65113-C2–2 to LFP, SAF2017–88026-R to JL) with the co-funding of European Regional Development Fund (EU-ERDF), Canary Islands Government (CEI2018–23/ACIISI to BG, CEI2019–08/ACIISI to BG and LFP, ProID2021010037 to AEB, LFP and BG) and "Juan de la Cierva Incorporacion" Grant Program from the Ministry of Science, Innovation and Universities (IJC2018-035193-I to CR). This project has been also supported by Alfredo Martin-Reyes Foundation (Arehucas)-Canary Islands Foundation for Cancer Research (FICIC). HAT is recipient of a predoctoral program grant from ULPGC (2016). JCM was funded by the Instituto de Salud Carlos III through a Miguel Servet program (CPII17/ 00015)

    Epidemiologic investigation of immune-mediated polyradiculoneuropathy among abattoir workers exposed to porcine brain

    Get PDF
    Background In October 2007, a cluster of patients experiencing a novel polyradiculoneuropathy was identified at a pork abattoir (Plant A). Patients worked in the primary carcass processing area (warm room); the majority processed severed heads (head-table). An investigation was initiated to determine risk factors for illness. Methods and Results Symptoms of the reported patients were unlike previously described occupational associated illnesses. A case-control study was conducted at Plant A. A case was defined as evidence of symptoms of peripheral neuropathy and compatible electrodiagnostic testing in a pork abattoir worker. Two control groups were used - randomly selected non-ill warm-room workers (n = 49), and all non-ill head-table workers (n = 56). Consenting cases and controls were interviewed and blood and throat swabs were collected. The 26 largest U.S. pork abattoirs were surveyed to identify additional cases. Fifteen cases were identified at Plant A; illness onsets occurred during May 2004–November 2007. Median age was 32 years (range, 21–55 years). Cases were more likely than warm-room controls to have ever worked at the head-table (adjusted odds ratio [AOR], 6.6; 95% confidence interval [CI], 1.6–26.7), removed brains or removed muscle from the backs of heads (AOR, 10.3; 95% CI, 1.5–68.5), and worked within 0–10 feet of the brain removal operation (AOR, 9.9; 95% CI, 1.2–80.0). Associations remained when comparing head-table cases and head-table controls. Workers removed brains by using compressed air that liquefied brain and generated aerosolized droplets, exposing themselves and nearby workers. Eight additional cases were identified in the only two other abattoirs using this technique. The three abattoirs that used this technique have stopped brain removal, and no new cases have been reported after 24 months of follow up. Cases compared to controls had higher median interferon-gamma (IFNγ) levels (21.7 pg/ml; vs 14.8 pg/ml, P<0.001). Discussion This novel polyradiculoneuropathy was associated with removing porcine brains with compressed air. An autoimmune mechanism is supported by higher levels of IFNγ in cases than in controls consistent with other immune mediated illnesses occurring in association with neural tissue exposure. Abattoirs should not use compressed air to remove brains and should avoid procedures that aerosolize CNS tissue. This outbreak highlights the potential for respiratory or mucosal exposure to cause an immune-mediated illness in an occupational setting

    Insights into Long-Lasting Protection Induced by RTS,S/AS02A Malaria Vaccine: Further Results from a Phase IIb Trial in Mozambican Children

    Get PDF
    Background: The pre-erythrocytic malaria vaccine RTS,S/AS02A has shown to confer protection against clinical malaria for at least 21 months in a trial in Mozambican children. Efficacy varied between different endpoints, such as parasitaemia or clinical malaria; however the underlying mechanisms that determine efficacy and its duration remain unknown. We performed a new, exploratory analysis to explore differences in the duration of protection among participants to better understand the protection afforded by RTS,S. Methodology/Principal Findings: The study was a Phase IIb double-blind, randomized controlled trial in 2022 children aged 1 to 4 years. The trial was designed with two cohorts to estimate vaccine efficacy against two different endpoints: clinical malaria (cohort 1) and infection (cohort 2). Participants were randomly allocated to receive three doses of RTS,S/AS02A or control vaccines. We did a retrospective, unplanned sub-analysis of cohort 2 data using information collected for safety through the health facility-based passive case detection system. Vaccine efficacy against clinical malaria was estimated over the first six-month surveillance period (double-blind phase) and over the following 12 months (single-blind phase), and analysis was per-protocol. Adjusted vaccine efficacy against first clinical malaria episodes in cohort 2 was of 35.4% (95% CI 4.5-56.3; p = 0.029) over the double-blind phase and of 9.0% (230.6-36.6; p = 0.609) during the single-blind phase. Conclusions/Significance: Contrary to observations in cohort 1, where efficacy against clinical malaria did not wane over time, in cohort 2 the efficacy decreases with time. We hypothesize that this reduced duration of protection is a result of the early diagnosis and treatment of infections in cohort 2 participants, preventing sufficient exposure to asexual-stage antigens. On the other hand, the long-term protection against clinical disease observed in cohort 1 may be a consequence of a prolonged exposure to low-dose blood-stage asexual parasitaemia
    corecore