159 research outputs found

    Nonlinear field theories during homogeneous spatial dilation

    Full text link
    The effect of a uniform dilation of space on stochastically driven nonlinear field theories is examined. This theoretical question serves as a model problem for examining the properties of nonlinear field theories embedded in expanding Euclidean Friedmann-Lema\^{\i}tre-Robertson-Walker metrics in the context of cosmology, as well as different systems in the disciplines of statistical mechanics and condensed matter physics. Field theories are characterized by the speed at which they propagate correlations within themselves. We show that for linear field theories correlations stop propagating if and only if the speed at which the space dilates is higher than the speed at which correlations propagate. The situation is in general different for nonlinear field theories. In this case correlations might stop propagating even if the velocity at which space dilates is lower than the velocity at which correlations propagate. In particular, these results imply that it is not possible to characterize the dynamics of a nonlinear field theory during homogeneous spatial dilation {\it a priori}. We illustrate our findings with the nonlinear Kardar-Parisi-Zhang equation

    Two species coagulation approach to consensus by group level interactions

    Get PDF
    We explore the self-organization dynamics of a set of entities by considering the interactions that affect the different subgroups conforming the whole. To this end, we employ the widespread example of coagulation kinetics, and characterize which interaction types lead to consensus formation and which do not, as well as the corresponding different macroscopic patterns. The crucial technical point is extending the usual one species coagulation dynamics to the two species one. This is achieved by means of introducing explicitly solvable kernels which have a clear physical meaning. The corresponding solutions are calculated in the long time limit, in which consensus may or may not be reached. The lack of consensus is characterized by means of scaling limits of the solutions. The possible applications of our results to some topics in which consensus reaching is fundamental, like collective animal motion and opinion spreading dynamics, are also outlined

    Field/Isolated lenticular galaxies with high SN values: the case of NGC 4546 and its globular cluster system

    Get PDF
    Abstract We present a photometric study of the field lenticular galaxy NGC 4546 using Gemini/GMOS imaging in g′r′i′z′. We perform a 2D image decomposition of the surface brightness distribution of the galaxy using galfit, finding that four components adequately describe it. The subtraction of this model from our images and the construction of a colour map allow us to examine in great detail the asymmetric dust structures around the galactic centre. In addition, we perform a detailed analysis of the globular cluster (GC) system of NGC 4546. Using a Gaussian Mixture Model algorithm in the colour-colour plane we detected hints of multiple groups of GC candidates: the classic blue and red subpopulations, a group with intermediate colours that present a concentrated spatial distribution towards the galaxy, and an additional group towards the red end of the colour distribution. We estimate a total GC population for NGC 4546 of 390 ± 60 members and specific frequency SN = 3.3 ± 0.7, which is relatively high compared to the typical value for galaxies of similar masses and environment. We suggest that the unusual GC population substructures were possibly formed during the interaction that led to the formation of the young ultra-compact dwarf (NGC 4546-UCD1) found in this system. Finally, we estimate the distance modulus of NGC 4546 by analyzing its luminosity function, resulting in (m − M) = 30.75 ± 0.12 mag (14.1 Mpc)

    Combined sub-optimal doses of Rosuvastatin and Bexarotene impairs angiotensin II-induced arterial mononuclear cell adhesion through inhibition of Nox5 signaling pathways and increased RXR/PPARα and RXR/PPARγ interactions

    Get PDF
    Aim: Mononuclear cell (MC) infiltration into the arterial subendothelium is a key event in atherogenesis. Rosuvastatin (Rosu) and bexarotene (Bex) exert anti-inflammatory activity, but serious dose-related adverse effects have emerged. The need for safer and effective strategies to prevent and treat atherosclerosis led us to test the effect of combined use of both drugs on angiotensin II (Ang-II)-induced arterial MC recruitment. Results: Vehicle, Rosu (10-30 nM), Bex (0.3-1 μM), or a combination of both were administered to human umbilical arterial endothelial cells (HUAECs) 20 h before stimulation with 1 μM Ang-II (4 h). Surprisingly, a combination of Rosu (10 nM)+Bex (0.3 μM), which did not influence Ang-II-induced MC recruitment when either stimulus was studied alone, significantly reduced this response. This effect was accompanied by diminished Ang-II-induced ICAM-1, VCAM-1, and CX3CL1 endothelial expression and CXCL1, CXCL8, CCL2, and CCL5 production. Preincubation of HUAECs with Rosu+Bex inhibited Nox5 expression and Nox5-induced RhoA activation stimulated by Ang-II through increased RXRα, PPARα, and PPARγ expression in addition to RXRα/PPARα and RXRα/PPARγ interactions. In vivo, combined but not single administration of Rosu (1.25 mg/kg/day) and Bex (10 mg/kg/day) significantly diminished Ang-II-induced arteriolar leukocyte adhesion in the cremasteric microcirculation of C57BL/6 mice and atherosclerotic lesion formation in apoE(-/-) mice subjected to an atherogenic diet. Innovation and conclusion: Combined administration of Bex+Rosu at suboptimal doses may constitute a new alternative and effective therapy in the control of the vascular inflammation associated to cardiometabolic disorders, since they synergize in their anti-inflammatory actions and may counteract their associated adverse effects

    Structural basis for substrate specificity of heteromeric transporters of neutral amino acids

    Get PDF
    Despite having similar structures, each member of the heteromeric amino acid transporter (HAT) family shows exquisite preference for the exchange of certain amino acids. Substrate specificity determines the physiological function of each HAT and their role in human diseases. However, HAT transport preference for some amino acids over others is not yet fully understood. Using cryo–electron microscopy of apo human LAT2/CD98hc and a multidisciplinary approach, we elucidate key molecular determinants governing neutral amino acid specificity in HATs. A few residues in the substrate-binding pocket determine substrate preference. Here, we describe mutations that interconvert the substrate profiles of LAT2/CD98hc, LAT1/CD98hc, and Asc1/CD98hc. In addition, a region far from the substrate-binding pocket critically influences the conformation of the substrate-binding site and substrate preference. This region accumulates mutations that alter substrate specificity and cause hearing loss and cataracts. Here, we uncover molecular mechanisms governing substrate specificity within the HAT family of neutral amino acid transporters and provide the structural bases for mutations in LAT2/CD98hc that alter substrate specificity and that are associated with several pathologies.his work was funded by “la Caixa” Foundation, Health Research grant 2020 (LCF/PR/HR20/52400017) to MP and OL, by the Spanish Ministry of Science, Innovation and Universities (MCIU/AEI) grants SAF2015-64869-R-FEDER and RTI2018-094211-B-100-FEDER to MP, and SAF2017-82632-P to OL, co-funded by the European Regional Development Fund (ERDF); the support of Catalan Government (grant 2017 SGR 961) to MP, and the support of the National Institute of Health Carlos III to CNIO; grants 31 Y2018/BIO4747 and P2018/NMT4443 from the Autonomous Region of Madrid and co-funded by the European Social Fund and the European Regional Development Fund to OL. CFR is funded by BES-2015-071348 PhD fellowship by the Spanish Ministry of Science, Innovation and Universities (MCIU/AEI). We gratefully acknowledge institutional funding from the Spanish State Research Agency of the Spanish Ministry of Science and Innovation – Programa Estatal de Fomento de la Investigación Científica y Técnica de Excelencia -Centres of Excellence “Severo Ochoa” CEX2019-000891-S and CEX2019-000913-S. IRB Barcelona is a member of the CERCA System of the Catalan Government P.B. is supported by a CIBERER contract.Peer ReviewedPostprint (author's final draft

    An extended star formation history in an ultra-compact dwarf

    Get PDF
    There has been significant controversy over the mechanisms responsible for forming compact stellar systems like ultra-compact dwarfs (UCDs), with suggestions that UCDs are simply the high-mass extension of the globular cluster population, or alternatively, the liberated nuclei of galaxies tidally stripped by larger companions. Definitive examples of UCDs formed by either route have been difficult to find, with only a handful of persuasive examples of stripped-nucleus-type UCDs being known. In this paper, we present very deep Gemini/GMOS spectroscopic observations of the suspected stripped-nucleus UCD NGC 4546-UCD1 taken in good seeing conditions (<0.7 arcsec). With these data we examine the spatially resolved kinematics and star formation history of this unusual object. We find no evidence of a rise in the central velocity dispersion of the UCD, suggesting that this UCD lacks a massive central black hole like those found in some other compact stellar systems, a conclusion confirmed by detailed dynamical modelling. Finally, we are able to use our extremely high signal-to-noise spectrum to detect a temporally extended star formation history for this UCD. We find that the UCD was forming stars since the earliest epochs until at least 1–2 Gyr ago. Taken together these observations confirm that NGC 4546-UCD1 is the remnant nucleus of a nucleated dwarf galaxy that was tidally destroyed by NGC 4546 within the last 1–2 Gyr

    A new rapid desensitization protocol for chemotherapy agents

    Get PDF
    Background: Desensitization has been used for some decades to treat patients with the allergenic drug when an alternative drug with similar effi cacy and safety is not available. We present the results from a series of oncology patients desensitized at our hospital during the last 2 years. Objective: To assess the effi cacy of a new desensitization protocol in patients allergic to chemotherapy drugs. Methods: We performed an observational retrospective study of 11 women (6 breast cancer and 5 ovarian cancer) who underwent our desensitization protocol. Four patients had immediate reactions to carboplatin, 3 to docetaxel, 3 to paclitaxel, and 1 to both docetaxel and paclitaxel. Premedication was administered in all cases. A 5-step protocol based on 5 different dilutions of the drugs was used. Results: We performed 39 desensitization procedures: 14 to carboplatin, 3 to oxaliplatin, 16 to docetaxel, and 6 to paclitaxel. Eight patients tolerated the full dose in 36 procedures. One patient suffered an anaphylactic reaction to carboplatin that reverted with treatment. One patient had dyspnea after a paclitaxel cycle. One patient experienced dyspnea due to chronic pulmonary thromboembolism related to her disease. Conclusion: Desensitization is a useful procedure in patients who are allergic to their chemotherapy agents

    Structural basis for substrate specificity of heteromeric transporters of neutral amino acids

    Full text link
    Despite having similar structures, each member of the heteromeric amino acid transporter (HAT) family shows exquisite preference for the exchange of certain amino acids. Substrate specificity determines the physiological function of each HAT and their role in human diseases. However, HAT transport preference for some amino acids over others is not yet fully understood. Using cryo-electron microscopy of apo human LAT2/CD98hc and a multidisciplinary approach, we elucidate key molecular determinants governing neutral amino acid specificity in HATs. A few residues in the substrate-binding pocket determine substrate preference. Here, we describe mutations that interconvert the substrate profiles of LAT2/CD98hc, LAT1/CD98hc, and Asc1/CD98hc. In addition, a region far from the substrate-binding pocket critically influences the conformation of the substrate-binding site and substrate preference. This region accumulates mutations that alter substrate specificity and cause hearing loss and cataracts. Here, we uncover molecular mechanisms governing substrate specificity within the HAT family of neutral amino acid transporters and provide the structural bases for mutations in LAT2/CD98hc that alter substrate specificity and that are associated with several pathologies

    First confirmed ultra-compact dwarf galaxy in the NGC 5044 group

    Get PDF
    Context. Ultra-compact dwarfs (UCDs) are stellar systems displaying colours and metallicities between those of globular clusters (GCs) and early-type dwarf galaxies, as well as sizes of Reff . 100 pc and luminosities in the range −13.5 < MV < −11 mag. Although their origin is still subject of debate, the most popular scenarios suggest that they are massive star clusters or the nuclei of tidally stripped dwarf galaxies. Aims. NGC 5044 is the central massive elliptical galaxy of the NGC 5044 group. Its GC/UCD system is completely unexplored. Methods. In Gemini+GMOS deep images of several fields around NGC 5044 and in spectroscopic multi-object data of one of these fields, we detected an unresolved source with g′ ∼ 20.6 mag, compatible with being an UCD. Its radial velocity was obtained with FXCOR and the penalized pixel-fitting (pPXF) code. To study its stellar population content, we measured the Lick/IDS indices and compared them with predictions of single stellar population models, and we used the full spectral fitting technique. Results. The spectroscopic analysis of the UCD revealed a radial velocity that agrees with the velocity of the elliptical galaxy NGC 5044. From the Lick/IDS indices, we have obtained a luminosity-weighted age and metallicity of 11.7 +1.4 −1.2 Gyr and [Z/H] = −0.79 ± 0.04 dex, respectively, as well as [α/Fe] = 0.30 ± 0.06. From the full spectral fitting technique, we measured a lower age (8.52 Gyr) and a similar total metallicity ([Z/H] = −0.86 dex). Conclusions. Our results indicate that NGC 5044-UCD1 is most likely an extreme GC (MV ∼ −12.5 mag) belonging to the GC system of the elliptical galaxy NGC 5044
    corecore