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The evolution of a system of chemical reactions can be studied, in the eikonal approximation, by means of
a Hamiltonian dynamical system. The fixed points of this dynamical system represent the different states in
which the chemical system can be found, and the connections among them represent instantons or optimal
paths linking these states. We study the relation between the phase portrait of the Hamiltonian system repre-
senting a set of chemical reactions with constant rates and the corresponding system when these rates vary in
time. We show that the topology of the phase space is robust for small time-dependent perturbations in concrete
examples and state general results when possible. This robustness allows us to apply some of the conclusions
on the qualitative behavior of the autonomous system to the time-dependent situation.
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I. INTRODUCTION

Understanding the dynamics of chemical kinetics is a
question of fundamental character in nonequilibrium statisti-
cal mechanics, apart from being of broad importance in ap-
plications to other sciences. Indeed, many models in chem-
istry �1�, biochemistry �2�, ecology �3�, and biology �4� use
stoichiometric relations as theoretical first principles describ-
ing some phenomenon. The simplest description of the time
evolution of a set of N reacting species is probably given by
the mean-field equations, an N-dimensional dynamical sys-
tem representing the concentrations, or total number, of mol-
ecules of the reacting species. One of the advantages of this
approach is that it allows us to use the powerful machinery
of dynamical systems theory �5�, raising the possibility of
identifying stationary states with fixed points, periodic be-
havior with limit cycles, etc.

Of course, as with every theory in physics, the mean-field
approximation has a range of validity. As it ignores fluctua-
tions, its description of the chemical system might be accu-
rate for short times; however, long-time dynamics will be
affected, dramatically in some cases, by rare events. It is
possible to study exactly the system evolution as a time-
continuous Markov process, the probability distribution of
which is given by the solution of an adequate master equa-
tion �6,7�. The full analytical solution of the master equation
is, in most situations, a formidable problem, and it yields,
usually, much more information than that needed in applica-
tions. The development of approximate theories is thus
clearly justified.

One of the most common approximations is the Fokker-
Planck equation, obtained from the master equation by
means of a Kramers-Moyal or van Kampen size expansion
�6,7�. This theory assumes that the number of reagents is
very large, so we can consider the implicit stochasticity of
the process as small Gaussian fluctuations around the mean-
field behavior. Definitely, rare events do not belong to this
category. If one wants to deal with fluctuations that are com-
parable with, or even greater than, the mean value, any ap-
proximation scheme must not rely on assumptions such as an
asymptotically large value of the number of reagents. It is

possible to construct such a theory, for instance, by taking
advantage of the relation among chemical kinetics and quan-
tum mechanics �8,9�. Once the master equation is formulated
as a quantum problem, it is possible to develop eikonal
�10,11� or WKB approximations �12�, or matched asymptotic
expansions of the spectral formulation �13�, able to tackle
rare events. In this work we will concentrate on the eikonal
approximation introduced in �11�. One of the advantages of
this approach is that it reduces the problem again to a dy-
namical system of 2N dimensions for N reacting species. The
additional N degrees of freedom are the conjugate “mo-
menta” corresponding to each of the concentrations and rep-
resent a measure of the size of the fluctuations. Due to the
Hamiltonian symmetry of this system, it can be effectively
reduced to a �2N−1�-dynamical system on some Riemannian
manifold. So, if there is only one chemical species, the case
in which we will concentrate here, we have a reduced num-
ber of dynamical scenarios. In particular, only fixed points
will be of physical relevance, and they will denote the pos-
sible stationary states in which the system can be found.
Contrary to the mean-field situation, rare events can drive the
system for one stationary state to another, a fact that is re-
flected by the existence of connections between the fixed
points of the dynamical system. These connections are not
the unique, but the optimal way in which a system evolves
from one state to the other �10�, and, as they are reminiscent
of instantons in quantum mechanics �14�, we will denote
them as instanton connections. Its importance is huge: the
web of connections, having the fixed points at their intersec-
tions, encodes the qualitative behavior of the chemical sys-
tem �11�, and its topology serves as a principle for the clas-
sification of nonequilibrium phase transitions in reaction-
diffusion models �15�.

All these works have been focused on the dynamics of
chemical kinetics happening at constant rates. While this as-
sumption is reasonable in many cases, there are situations in
which we should go beyond it and consider the explicit time
variation of the reaction rates. Periodically illuminated
chemical reactions �16� or seasonal variation in population
dynamics �17� serve as examples of nontrivial behavior gen-
erated by a temporal forcing. Not much attention seems to
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have been paid to eikonal approximations of time-dependent
chemical kinetics, and when they are considered, nonautono-
mous perturbations are usually treated within the quasista-
tionary approximation �18,19�. It is our goal to extend the
existent approaches and consider arbitrary frequency, albeit
small, perturbations. The concrete problem under study is
how the phase portrait of the eikonal dynamical system is
modified when time-dependent perturbations enter into play:
do the instanton connections survive or do they disappear
changing the qualitative behavior of the system? Giving a
totally general answer to this question is a difficult task, but
we will see that these connections seem to be very robust and
persistent when they are subject to a small periodic forcing.
This will be shown with the help of particular models, for
which rigorous results �for the eikonal approximation� are
easily proven, and then we will extend them to the general
setting when possible.

II. INSTANTON PERSISTENCE

A. Branching and annihilation

For the shake of clarity, we will illustrate the problem of
instanton persistence with a particular reaction, branching,
and annihilation of identical particles �20�, but we will state
general results for arbitrary reaction sets. Let us start consid-
ering a single species of identical particles A, which annihi-
late in pairs and undergo binary branching

A + A→
��t�

�, A→
��t�

A + A , �1�

where � denotes the empty set. The master equation describ-
ing the probability distribution of having n reagents at time t
reads

dPn�t�
dt

= ��t���n − 1�Pn−1�t� − nPn�t��

+
��t�

2
��n + 2��n + 1�Pn+2�t� − n�n − 1�Pn�t�� .

�2�

It can be represented by a partial differential equation �PDE�
by introducing the generating function

G�p,t� � �
n=0

�

pnPn�t� , �3�

which provides us with the time-dependent Hamiltonian

H�p,q,t� = ��t��p − 1�pq +
��t�

2
�1 − p2�q2 �4�

and the imaginary time Schrödinger equation

�tG = − H�p,− �p,t�G . �5�

The eikonal approximation proposes the reduction of the
problem to Hamilton equations �11�, which in this case be-
come the nonautonomous dynamical system �note, however,
that we could reduce the problem to one time-dependent re-
action rate by means of the time reparametrization t̃
=�0

t ����d��

ṗ = −
�H

�q
= ��t��1 − p�p + ��t��p2 − 1�q , �6�

q̇ =
�H

�p
= ��t��2p − 1�q − ��t�pq2. �7�

Suppose for a moment that both � and � are time indepen-
dent. In this case the system exhibits three lines with zero
energy: the invariant lines p=1, q=0, and

q =
2�p/�
1 + p

. �8�

Furthermore, we know that these three lines connect the
fixed points �0, 0�, �1, 0�, and �1,� /�� in the �p ,q� plane; see
Fig. 1 �or Fig. 3 in �11��. Now we can try to understand what
happens when we let the reaction rates vary in time. It is easy
to see that the lines p=1 and q=0 remain invariant zero-
energy lines of the system; however, the explicit time depen-
dence of the Hamiltonian prevents the conservation of the
energy H and, in general, forces the disappearance of the
third zero-energy line. We can generalize this fact for an
arbitrary reaction Hamiltonian. Given any set of reactions
with time-dependent rates, we know that the Hamiltonian
necessarily fulfills

H�p = 1,q,t� = 0 �9�

due to the conservation of probability �11,15�. So this means
that for any set of (time-dependent) reaction rules, the p=1
line is an invariant, zero-energy line of the dynamical sys-
tem. Since this line describes the mean-field dynamics of the
system, we will call it the mean-field line �11,19�. Some sys-
tems possess an absorbing state when they contain zero par-
ticles; this happens if all reactions of the type

� →
�n�t�

nA �10�

are absent in the dynamics. In this case, the Hamiltonian
must obey the condition �11,15�

H�p,q = 0,t� = 0. �11�

So we can claim that any (nonautonomous) system without
particle production from the vacuum has the invariant, zero-
energy line q=0. And thus, when it is present, we will call it

0 0.5 1 1.5
p

0

0.5

1

1.5

q

FIG. 1. Phase space for the branching and annihilating particle
problem. The parameter values are �=�=1.
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the absorbing-state line. These properties can be clearly seen
from the general form of the Hamiltonian term representing
the reaction

mA →
�mn�t�

nA; �12�

it is �15�

Hmn =
�mn�t�

m!
�pn − pm�qm. �13�

In the autonomous situation, the set of zero-energy lines de-
termines the physics of the problem: the fixed points ob-
tained when these lines cross represent the possible states in
which the system can be found and the connections among
them the possible transition paths. Together with the mean-
field line �the global minimum of the action� and the
absorbing-state line one finds other lines with zero energy:
the instanton lines �11,15,19�. We know that both the mean-
field line and the absorbing-state line persist if we let the
reaction rates vary in time, but however, it is not so obvious
to see what happens with the instanton lines. These are de-
fined in terms of zero energy if the system is not explicitly
dependent on time, but when this is not the case, the defini-
tion loses its meaning since energy is no longer conserved.
Due to this fact and because the physical role of the instanton
lines is to be optimal paths between different states, what we
would like to know at this point is if both fixed points and
connections among them survive after the nonautonomous
forcing is switched on. We can be sure that hyperbolic fixed
points persist to a small periodic time-dependent forcing, af-
ter possible relocation of their position, but do the instanton
connections persist?

To address this question we will use the method devel-
oped by Melnikov �21� �see also �5��. Consider an autono-
mous two-dimensional dynamical system

ẋ = f�x� , �14�

x= �x1 ,x2�, f= �f1 , f2�, with two hyperbolic fixed points xa

and xb linked by a heteroclinic connection, which is param-
etrized by the system solution xh�t− t0� for initial time t0.
Assuming that the motion goes from xa to xb, this connection

is formed by a branch of the unstable manifold of xa, which
totally overlaps with a branch of the stable manifold of xb.
Let us now consider the perturbed version of this problem,

ẋ = f�x� + �g�x,t� , �15�

where the perturbation g�x , t� is time periodic with period T,
amplitude � small enough and sufficiently regular. The dy-
namics of this nonautonomous system is given by the asso-
ciated Poincaré map P�, which maps every initial condition
point x�0� with the corresponding value of the solution x�T�
after one period has elapsed �5�. The hyperbolic fixed points
of the unperturbed system, xa and xb, are hyperbolic fixed
points of the Poincaré map P0. Since the map P� is a pertur-
bation of P0, these points have a continuation, xa

� and xb
�, as

hyperbolic fixed points of P�, and their invariant manifolds
vary continuously with respect to �. The perturbed system
will not, in general, maintain the coincidence between the
branches of the unstable and stable manifolds of xa and xb,
respectively: now these branches might intersect, preserving
the existence of the heteroclinic connection �see Fig. 2� or
might not, destroying it, like in Figs. 3 and 4. The distance
between the stable and unstable branches is given by
d�� , t0�=�M�t0�+O��2�, with

M�t0� = �
−�

�

f„xh�t − t0�… ∧ g„xh�t − t0�,t…dt , �16�

0 1
p

0

q

FIG. 2. Sketch of the phase space for the branching and annihi-
lating particle problem, assuming that the stable and unstable
branches intersect. The heteroclinic connection goes through all the
intersections of these branches.

0 1
p

0

q

FIG. 3. Sketch of the phase space for the branching and annihi-
lating particle problem, assuming that the stable and unstable
branches do not intersect.

0 1
p

0

q

FIG. 4. Sketch of the phase space for the branching and annihi-
lating particle problem, assuming that the stable and unstable
branches do not intersect.
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where

f ∧ g = 	 f1 f2

g1 g2
	 �17�

denotes the wedge product of vectors f and g. Equation �16�
defines the so-called Melnikov function, which yields the
first-order approximation in � of the distance between the
stable and unstable manifolds measured along a direction
that is perpendicular to the unperturbed connection at the
point xh�t0�. A change of sign of M�t0� means that there
exists some t0 such that d�� , t0�=0, implying the existence of
a solution xh

��t� of Eq. �15� defining a heteroclinic connection
among the two hyperbolic fixed points xa

� and xb
� of the

Poincaré map corresponding to Eq. �15�—say,

lim
t→−�

xh
��t� = xa

�, lim
t→�

xh
��t� = xb

� . �18�

Let us now consider the branching and annihilating sys-
tem, Eqs. �6� and �7�, with constant reaction rates. The in-
stanton connection �the separatrix linking �1,� /�� to �0,0��
is parametrized by the system solution

xh�t − t0� = „ph�t − t0�,qh�t − t0�… = 
 1

1 + e��t−t0� ,
2�/�

2 + e��t−t0�� .

�19�

If we assume that the perturbation of the reaction rates is
given by

��t� = � + ��1�t� , �20�

��t� = � + ��1�t� , �21�

and the new rates are T periodic and regular enough, we
obtain the system

ṗ = ��1 − p�p + ��p2 − 1�q + ���1�t��1 − p�p

+ �1�t��p2 − 1�q� , �22�

q̇ = ��2p − 1�q − �pq2 + ���1�t��2p − 1�q − �1�t�pq2� ,

�23�

which is of type �15�. The associated Poincaré map P� still
has the origin as hyperbolic fixed point. Another hyperbolic
fixed point of this map, corresponding to �1,� /�� when �
=0, is �1,q��, where q� is obtained through the solution of
Eq. �23� for p=1. This is nothing but a Bernoulli differential
equation, which can be straightforwardly integrated to get

q�t� =
q�0�exp��0

t ����d��

1 + q�0��
0

t

exp��0
s����d����s�ds

. �24�

We just need to apply the condition q�0�=q�T� to this solu-
tion to find

q� =
exp��0

T����d�� − 1

�
0

T

exp��0
s����d����s�ds

. �25�

To determine if the unstable manifold of �1,q�� intersects
the stable manifold of �0,0� we substitute the corresponding
values of f and g into the Melnikov function �16�,

M�t0� = �
−�

�

���1�t� − ��1�t��

	��1 − p��1 − p − p2�q2��xh�t − t0��dt

= �
−�

�

h�t�
�t − t0�dt

= �
−�

�

h�s/� + t0�
̃�s�ds , �26�

after the change of variables s=��t− t0� and where

h�t� = ��1�t� − ��1�t� , �27�


�t� = ��1 − p��1 − p − p2�q2��xh�t�� , �28�


̃�s� = −
4�2

�2

e2s�1 + 2 sinh�s��
�1 + es�3�2 + es�2 , �29�

the symbol sinh standing for the hyperbolic sine. It is easy to
see that 
̃�s� has zero mean,

�
−�

�


̃�s�ds = −
4�2

�2 �
−�

� e2s�1 + 2 sinh�s��
�1 + es�3�2 + es�2 ds

=
2�2

�2 � es

�1 + es�2�2 + es�−�

�

= 0, �30�

a fact that will prove its usefulness later on. Since h�t� is T
periodic and continuous, we can expand it in Fourier series,

h�t� = �
n=−�

�

ane2�int/T, �31�

and substitute it into the Melnikov function to obtain

M�t0� = −
4�2

�2 �
n=−�

�

ane2�int0/T�
−�

� e2s�1 + 2 sinh�s��
�1 + es�3�2 + es�2

	e2�ins/��T�ds , �32�

which is the Fourier decomposition of the Melnikov func-
tion. We can check the validity of the Fourier series �32�
after contrasting that the norm

�
−�

� 	 e2s�1 + 2 sinh�s��
�1 + es�3�2 + es�2 	ds =

5�5 − 11

2
�33�

is finite. This representation allows us to calculate the mean
value

1

T
�

0

T

M�t0�dt0 = a0�
−�

�


̃�s�ds = 0, �34�

where we have used
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1

T
�

0

T

e2�int0/Tdt0 = �n0, �35�

and �n0 denotes the Kronecker delta. So we know that the
Melnikov function is periodic, continuous �from its very
definition in Eq. �16� it only depends on f, g, and xh�, and
with zero mean, implying that it either crosses zero or vanish
identically. In the first case, we can claim that the point
�1,q�� is connected to the origin, in the second; we cannot,
due to the possible presence of small terms O��2�. However,
we can see that the second case only happens when h�t� is
constant. Indeed, integrating by parts and changing variables
x=es we obtain

�
−�

� e2s�1 + 2 sinh�s��
�1 + es�3�2 + es�2 e2�ins/��T�ds

=
i�n

�T
�

−�

� es

�1 + es�2�2 + es�
e2�ins/��T�ds

=
i�n

�T
�

0

� x2�in/��T�

�1 + x�2�2 + x�
dx . �36�

This last integral can be obtained by means of contour inte-
gration in the complex plane. Noticing that for a complex
variable z,

z2�in/��T� = e2�in ln�z�/��T�, �37�

we can use the keyhole contour choosing the logarithm
branch cut as the positive real axis, and by employing the
residue theorem we obtain

�
0

� x2�in/��T�

�1 + x�2�2 + x�
dx =

2�i

1 − e−4�2n/��T�
�Res�f�z�,− 1�

+ Res�f�z�,− 2�� , �38�

where

f�z� =
z2�in/��T�

�1 + z�2�2 + z�
. �39�

We can now compute the residues

Res�f�z�,− 2� = exp�−
2�2n

�T
+

2�in

�T
ln�2� , �40�

Res�f�z�,− 1� = 	 d

dz

z2�in/��T�

�2 + z�
	

−1

= − 
1 +
2�in

�T
�exp
−

2�2n

�T
� , �41�

to conclude

�
−�

� e2s�1 + 2 sinh�s��
�1 + es�3�2 + es�2 e2�ins/��T�ds

=
2�2n/��T�

1 − exp�− 4�2n/��T��
exp
−

2�2n

�T
�

	
1 +
2�in

�T
− exp�2�in

�T
ln�2�� , �42�

and one can see that it only vanishes if n=0 or n→ �, for
� and T positive finite real numbers. Hence, the Melnikov
function is identically zero if and only if an=0 for all n�0 in
Eq. �31� or, what is the same, if and only if h�t� is constant.

We still have to analyze what is the meaning of the con-
dition

��1�t� − ��1�t� = c , �43�

for some constant c. If c=0, then the system can be reduced
to the unperturbed one by means of a reparametrization of
the time variable:

u = �
0

t �1 +
�1���

�
d� . �44�

In this case the geometry of the phase space is exactly pre-
served; only the parametrization of the system solution along
the separatrices might change. If �1 and �1 are chosen con-
stant, then for any value of c, the phase-space topology is the
same, as a small retuning of the Hamiltonian parameters can-
not modify it. In these two particular cases we know that the
Melnikov function is identically zero because the connection
is still given by the complete superposition of a branch of the
stable manifold of one of the fixed points and a branch of the
unstable manifold of the other. In the general case we know
that a perturbation fulfilling h�t�=c is a combination of these
two, translation and reparametrization,

��t� = �� + ��1��1 + �
�t�� , �45�

��t� = �� + ��1��1 + �
�t�� , �46�

for some function 
�t�, up to terms O��2�. This means that,
in order to know if the distance between the invariant mani-
folds of the fixed points is identically zero, we would have to
use the extension of the Melnikov method to higher orders
�23�.

B. General setting

It would be highly desirable to extend two properties of
this example to general systems–say, the possibility of ex-
pressing the Melnikov function as a Fourier series—and to
show that it has zero mean. We will start with the second
claim assuming that the first one is true, and we will check
its validity afterwards. The most general reaction Hamil-
tonian can be built adding the generic terms �13�,

H = �
m�n

�mn�t�
m!

�pn − pm�qm, m,n = 0,1,2, . . . , �47�

and it allows us to express the dynamical system as
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ṗ = �
m�n

�mn�t�
�m − 1�!

�pm − pn�qm−1, m,n = 0,1,2, . . . ,

�48�

q̇ = �
m�n

�mn�t�
m!

�npn−1 − mpm−1�qm, m,n = 0,1,2, . . . ,

�49�

where all the rates �mn�t� are supposed to have the same
period T �the case of perturbations with different periods will
be discussed below�. Assuming the form of the perturbation
�mn�t�=�mn

0 +��mn
1 �t� allows us to split the Hamiltonian into

two terms, H=H0+�H1. So we can write the integrand of
the Melnikov function as the set of Poisson brackets

f„xh�t − t0�… ∧ g„xh�t − t0�,t…

= �H1„xh�t − t0�,t…,H0„xh�t − t0�…� �50�

and obtain

M�t0� = �
−�

�

�H1„xh�t − t0�,t…,H0„xh�t − t0�…�dt

= �
−�

� d

dt
H1„xh�t − t0�,t…dt − �

−�

� �

�t
H1„xh�t − t0�,t…dt

= − �
−�

� �

�t
H1„xh�t − t0�,t…dt , �51�

where we have used the fact that instanton lines link fixed
points lying on zero-energy invariant lines. Since

H1„xh�t − t0�,t… = �
m�n

�mn
1 �t�Jmn�t − t0� ,

�52�

Jmn�t − t0� =
1

m!
�p�t − t0�n − p�t − t0�m�q�t − t0�m,

we can integrate by parts to get

M�t0� = − �
−�

�

�
m�n

d

dt
�mn

1 �t�Jmn�t − t0�dt

= �
−�

�

�
m�n

�mn
1 �t�

d

dt
Jmn�t − t0�dt . �53�

This allows us to rewrite, at least formally, the Melnikov
function as a Fourier series,

M�t0� = �
k=−�

�

e2�ikt0/T�
−�

�

�
m�n

�mn,k
1 d

ds
Jmn�s�e2�iks/Tds ,

�54�

after the change of the integration variable s= t− t0. Its mean
value is thus given by

1

T
�

0

T

M�t0�dt0 = �
−�

�

�
m�n

�mn,0
1 d

ds
Jmn�s�ds = 0. �55�

In order to check the validity of Fourier series �54� we need
to bound the norm

�
−�

� 	 dJmn

dt
	dt . �56�

This is not a difficult task because both p�t� and q�t� must be
continuously differentiable along the connection and with fi-
nite limits when t→ �, which must coincide with their
values at the fixed points. Furthermore, the derivatives ṗ and
q̇ decrease to zero exponentially at infinity due to the hyper-
bolic character of the fixed points. This implies that the norm
�56� is necessarily finite.

It is actually simpler to show that the Melnikov function
has zero mean. Equation �53� can be cast into the form

M�t0� = −
d

dt0
�

−�

�

�
m�n

�mn
1 �t + t0�Jmn�t�dt , �57�

which, together with the periodicity of the functions �mn
1 �t�,

directly provides the desired result. However, the Fourier
series setting favors the identification of the conditions under
which the Melnikov function vanishes, as Eq. �43� in the last
section, which cannot be straightforwardly extracted from
this expression. So we believe that the Fourier series repre-
sentation will be more helpful in applications to concrete
reaction schemes.

In conclusion, we have shown that the Melnikov function
of a perturbed instanton connection can always be expanded
in Fourier series, provided that it links hyperbolic fixed
points. Furthermore, it is always a zero mean function, which
implies that it either crosses zero or vanish identically. So for
any reaction Hamiltonian we have the following result: given
an instanton connection linking two hyperbolic fixed points,
any small time-periodic perturbation of the rates will pre-
serve the existence of the connection if the corresponding
Melnikov function is not identically zero. In the other case,
we would have to study the behavior of the Melnikov dis-
tance at higher orders, in order to be able to give a rigorous
conclusion �23�.

To finish, let us note the difficulties in extending this re-
sult and proving a general theorem about the persistence of
the instanton connections even when the Melnikov function
is identically zero. In this case, we could recall the expansion
of the Melnikov distance in terms of higher-order Melnikov
functions �23�. One would be tempted to use an equivalent
argument to that of the present section to try to show that an
arbitrary-order Melnikov function either has zero mean or
vanish identically. This would imply in turn that either some
function in the expansion is nonzero, and thus the connection
is preserved by means of a transversal crossing of the stable
and unstable manifolds, or the whole series becomes identi-
cally zero. While this can suggest, at first sight, that the
Melnikov distance is also identically zero in this case, we
cannot rely on a rigorous argument to prove so, since the
perturbative expansion is not analytic in the small parameter
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in general situations. Furthermore, we can always find a fam-
ily of transformations �for instance, by continuing the chain
of reparameterizations in Eqs. �45� and �46�� able to nullify
an arbitrary order Melnikov function. So a full proof would
need to handle these special perturbations, and this is com-
plicated by the lack of analyticity of the series expansion,
despite the probable fact that they are built by combinations
of reparametrizations, constant shifts of the parameter val-
ues, or other trivial transformations preserving the phase-
space topology. Also, proving that the higher-order Melnikov
functions have zero mean is not a trivial fact. These imply
nonlinear combinations of the external perturbations and the
corresponding mixture of Fourier modes that complicates the
development of a simple form like Eq. �54� in these cases.
We illustrate this situation with the second-order Melnikov
function in the Appendix. Anyway, perturbations requiring a
higher-order Melnikov analysis do not constitute the generic
case, and we believe that the majority of the physical situa-
tions could be analyzed within the first-order, or at most
second-order, formalism.

III. DISCUSSION

So far we have concentrated in showing that the instanton
connections persist when the chemical system is temporally
forced by a weak perturbation. We devote this section to
explain the physical consequences of this fact. As we already
argued, the topology of the phase space describes the physics
of the system, so if its topology is preserved when the system
is forced, this means that the qualitative behavior of the sys-
tem is preserved too. The disappearance of an instanton con-
nection would mean that this qualitative behavior is modi-
fied, but how strongly? These connections are optimal paths
linking different physical states �given by the fixed points of
the dynamical system�, but the absence of one connection
communicating two states does not mean that the system
cannot go from one to the other. It only means that there is
not an optimal way of going. We will show the importance of
this fact using a toy model of biological relevance in plank-
ton modeling. Suppose we have the reactions

A→
�

A + A, A→
�

� �58�

occurring at the same constant rate �. This set of equations
has been used to model plankton patchiness in some occa-
sions �24–26�. We can straightforwardly write the
Schrödinger equation for the generating function �6,27�,

�tG = ��p − 1�2�pG , �59�

so the reaction Hamiltonian reads

H = ��p − 1�2q . �60�

The corresponding dynamical system is highly degenerate,
with two invariant lines p=1 and q=0, with all their points
being fixed. This means that if we start with an initial con-
dition �q=n0 , p=1�, for some n0�0, then this will be the
solution for all times. As is totally clear, there are no instan-
ton lines linking the mean-field line with the absorbing-state
line. Let us now concentrate directly in the exact PDE �59�

instead of the approximate dynamical system. This is a lin-
ear, first-order PDE which can be easily solved along char-
acteristics �6�

G�p,t� = G0�1 −
1 − p

1 + �1 − p��t
 , �61�

and due to normalization, we have the long-time asymptotics

lim
t→�

G�p,t� = lim
t→�

G0�1 −
1 − p

1 + �1 − p��t
 = G0�1� = 1,

�62�

which corresponds exactly to the probability distribution
Pn=�n0. This means that in the infinite-time limit, regardless
of the initial condition, the system will be in the absorbing
state with zero particles. So, as we have seen, the absence of
instanton connections does not stop the system from under-
going an extinction transition. One can figure out how this
happens representing the process �58� with the Itô stochastic
differential equation �3,25�

d� = �2��dW , �63�

where W denotes a Wiener process. This equation describes
Brownian motion with state-dependent diffusion and tells us
that the transition to extinction is very different in this case:
no optimal trajectory is chosen; instead, the state with zero
particles is reached after performing a random walk from the
initial condition. This will not necessarily happen in every
situation; actually, state-dependent Brownian motion is one
of the simplest possibilities. More complicated Hamiltonians
with powers of the momentum above the quadratic one ex-
hibit properties corresponding to non-Gaussian statistics �6�.
In general, the random walk will be more complex than
simple Brownian motion, but all the cases will have in com-
mon the absence of an optimal way of going from one physi-
cal state to another.

The instanton connections are a useful tool that allows us
to calculate the frequency of rare fluctuations that drive the
system among different states. The mean transition time is
obtained, at exponential order, computing the action along
the instanton connection �11�. If our perturbation is pure-time
reparametrization, as the second perturbation in Eqs. �45�
and �46�, and the function 
�t� periodic, a straightforward
computation reveals that the action along the heteroclinic
orbit is exactly the same as for the unperturbed system. More
general perturbations are not tractable analytically, and we
would have to rely on a numerical treatment of the problem.
The heteroclinic connection can be obtained, for instance, by
means of a shooting method and the action computed as a
numerical integral on it. In any case, we expect that small,
well-behaved, periodic perturbations will yield transition
times of the same order of magnitude as the unperturbed
system. Instanton persistence is important as it allows ap-
proximating this sort of nonautonomous systems by their au-
tonomous counterparts in the first instance and serves as a
justification of the quasistationary approximation for slow
signals. Perturbations that are not periodic might have a
stronger effect on the system, and in particular, singular
enough perturbations could change the phase-space topol-
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ogy; however, it is rather difficult to conceive physical situ-
ations that give rise to such a perturbation. Also, the math-
ematical framework changes considerably, since the absence
of a Poincaré map does not allow the definition of the instan-
ton as a connection among fixed points of this map, like in
the periodic case. In any case, even if the instanton connec-
tions were broken, but the physical states did not drift apart
form each other, transitions will be possible if we wait long
enough, due to the uncorrelated fluctuations the system is
subject to �28�, but however, there will be no optimal paths
linking those states.

IV. CONCLUSIONS AND OUTLOOK

In this work we have studied the persistence of instanton
connections in chemical systems, when we promote the re-
action rates from constants to functions of time. A set of
chemical reactions can be mapped, under the eikonal ap-
proximation, onto a dynamical system, the fixed points of
which denote the possible states where the chemical system
can be found. Connections among fixed points denote opti-
mal transition paths communicating different states. The per-
sistence of these instanton lines indicates the robustsness of
the physical processes that are taking place in the reactor and
shows us that the qualitative behavior of the system will be
similar when subject to small nonautonomous perturbations.
We have shown our results with one particular model, and
we have stated them in a more general setting when it has
been possible. The main theoretical tool that we have em-
ployed is the Melnikov function, which has proven itself
very useful in dealing with this type of problems.

One of the directions in which we would like to extend
the theory is the problematic of connections linking nonhy-
perbolic, or one nonhyperbolic and one hyperbolic, fixed
points. The physical motivation comes from the recent clas-
sification of phase transitions in reaction-diffusion models,
which identifies critical points of the physical system with
the nonhyperbolic fixed points at a bifurcation threshold of
the dynamical system �15�. While it is very difficult to see
what happens in the general situation, we know that the
mean value of the Melnikov function is zero if the mean
value of all the external perturbations is zero, as is shown by
Eq. �55�, provided it is well defined in this case. This sug-
gests to us that in a broad number of situations the topology
of the phase space will remain unchanged if the mean value
of all the external perturbations vanishes, even when some of
its fixed points were nonhyperbolic. It is, however, very dif-
ficult to prove a result in that direction, since perturbating a
system in a critical state could have unpredictable conse-
quences. Furthermore, the existence of the Fourier series ex-
pansion of the Melnikov function is no longer guaranteed, as
the loss of hyperbolicity implies that we do not have an
exponential decay at infinity of the absolute value in Eq.
�56�.

If some of the perturbations have a nonzero mean, then
the problem becomes much more difficult. The system will
be moved out of criticality at some of its points, and its
behavior will be more similar to that of the �partially� non-
critical phase corresponding to the autonomous system with

the parameters retuned according to the mean value of the
external perturbations. Unfortunately, we cannot map this
situation to that described in Sec. II, because in this case we
have no control on the amplitude of the perturbation, which
may be comparable to the distance to some of the critical
points. So the problem becomes genuinely nonperturba-
tional, and we can no longer employ a technique like the
Melnikov function. In this case it is difficult to deal even
with very slow perturbations, since this type of settings fa-
vors the appearance of soft modes, which rules out the pos-
sibility of treating the external signals adiabatically �22�.

Another problem we would like to deal with is the case of
several perturbations with different periods. The simplest
case is that in which the ratio of the periods of all possible
different pairs of perturbations that are affecting the system
is a rational number. In this case, we say that the perturba-
tions are commensurable, and we can find a period which is
common to all of them. Once obtained, we have reduced our
problem to the one studied in Sec. II. The case of incommen-
surable perturbations is, of course, more complex, as it im-
plies that the dynamics of the perturbed system cannot be
reduced to the dynamics of a periodic Poincaré map. The
fixed points of the unperturbed system give rise to quasiperi-
odic solutions of the perturbed problem, with their invariant
manifolds being quasiperiodic as well �29�.

There are many other questions that remain to be an-
swered. One is the possible appearance of chaotic behavior
induced by internal stochasticity. As noted in �12�, for two
reacting species we have a four-dimensional eikonal Hamil-
tonian, which will give rise, in general, to a three-
dimensional dynamical system on some Riemannian mani-
fold. In this case, chaos, unlike in the two-dimensional
mean-field dynamical system, is indeed possible. But chaos
is also possible in the case of one reacting species obeying
reaction rules with time-dependent rates. In this situation,
“energy” is no longer conserved and the nonautonomous dy-
namical system, without integrals of motion, becomes effec-
tively three dimensional. Indeed, situations like the one plot-
ted in Fig. 2—that is, when the heteroclinic connection is
preserved due to the intersection of the stable and unstable
manifolds—give rise to complex dynamical scenarios. These
include the appearance of Smale horseshoes and even the
presence of strange attractors related to the creation and de-
struction of such horseshoes �30–32�. Although the genera-
tion of chaotic behavior of this type can be attractive from a
nonlinear dynamics point of view, we are not aware, at this
point, of its possible physical meaning.

Of course, studying multispecies reactions, both autono-
mous and nonautonomous, is a very interesting problem that
deserves further efforts. The nonautonomous situation im-
plies the technical difficulty of extending the Melnikov func-
tion theory to a higher dimensionality. The ideas developed
for three-dimensional systems �33,34� could perhaps be
adapted for studying four- or higher-dimensional problems
and to try to obtain in this way the results that we would
need to understand the more general multispecies reactions.
Also, as we have already pointed out, the Melnikov function
is a perturbative result. It allows us to treat arbitrary fre-
quency but necessarily small perturbations. To fully under-
stand the dynamics of nonautonomous chemical reactions,
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even in the one species case, we would need a nonperturba-
tional result. With it we could try to address questions such
as the forcing of systems near criticality or the appearance of
soft modes. As we can see, chemical kinetics presents a very
complex phenomenology, and it is challenging from a math-
ematical point of view. A deep understanding of the physics
of these nonequilibrium systems will presumably imply the
parallel development of powerful methodological tech-
niques.

ACKNOWLEDGMENTS

The authors gratefully acknowledge input from Ernest
Fontich and Carles Simó. This work has been partially sup-
ported by the Ministerio de Educación y Ciencia �Spain�
through Projects Nos. EX2005-0976, FIS2005-01729, and
MTM2005-02094.

APPENDIX: SECOND-ORDER MELNIKOV FUNCTION

Consider the two-dimensional dynamical system

ẋ = f�x� + �g�x,t� + �2h�x,t� , �A1�

where x= �x1 ,x2�, f= �f1 , f2�, g= �g1 ,g2�, and h= �h1 ,h2� are
sufficiently regular functions. The second-order Melnikov
function reads

M2�t0� = �
−�

�

f„xh�t�… ∧ �2−1D2f„xh�t�…�xh
1�t + t0,t0��2

+ Dg„xh�t�,t + t0…xh
1�t + t0,t0� + h„xh�t�,t + t0…�dt ,

�A2�

where D2f and Dg denote the Hessian and Jacobian of f and
g, respectively, xh�t� is the solution parametrizing some
given heteroclinic connection, and xh

1 is the solution to the
variational equation

ẋh
1�t,t0� = Df„xh�t − t0�…xh

1�t,t0� + g„xh�t − t0�,t… . �A3�

We now assume that this dynamical system is a reaction
Hamiltonian system and both g and h come from small non-
autonomous perturbations of the Hamiltonian parameters,
just like in Sec. II. Then, because Eq. �A3� is linear, its
solution will depend linearly on the Fourier modes of the
time-dependent parameters evaluated at t0. But this solution
appears quadratically in Eq. �A2� and also multiplying the
Jacobian of g, which depends linearly, by assumption, on the
same Fourier modes. This quadratic dependence complicates
recasting the second-order Melnikov function into a form
similar to Eq. �54�, which would help enormously for calcu-
lating its mean value.
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