161 research outputs found

    Treatment of diverticular disease: an update on latest evidence and clinical implications

    Get PDF
    Background: Diverticular disease (DD) is a common condition, especially in Western countries. In about 80% of patients, colonic diverticula remain asymptomatic (diverticulosis), while approximately 20% of patients may develop abdominal symptoms (symptomatic uncomplicated diverticular disease, SUDD) and, eventually complications as acute diverticulitis (AD). The management of this condition has been improved, and in the last five years European countries and the USA have published guidelines and recommendations. Scope: To summarize the latest evidence and clinical implication in treatment of DD focusing the attention either on the treatment of diverticulosis, SUDD and AD together with the primary and secondary prevention of diverticulitis. Findings: The present review was based on the latest evidence in the treatment of DD in the last 10 years. In the last 5 years, six countries issued guidelines on DD with differences regarding covered topics and recommendations regarding treatments. At present there is a lack of rationale for drug use in patients with asymptomatic diverticulosis, but there are limited indications to suggest an increase in dietary fibre to reduce risk of DD. To achieve symptomatic relief in SUDD patients, several therapeutic strategies with fibre, probiotics, rifaximin and mesalazine have been proposed even if a standard therapeutic approach remained to be defined. Agreement has been reached for the management of AD, since recent guidelines showed that antibiotics can be used selectively, rather than routinely in uncomplicated AD, although use of antibiotics remained crucial in the management of complicated cases. With regard to treatment for the primary and secondary prevention of AD, the efficacy of rifaximin and mesalazine has been proposed although with discordant recommendations among guidelines. Conclusion: Treatment of DD represented an important challenge in clinical practice, especially concerning management of SUDD and the primary and secondary prevention of AD

    Treatment of helicobacter pylori infection in atrophic gastritis

    Get PDF
    Helicobacter pylori (Hp) is a major human pathogen causing chronic, progressive gastric mucosal damage and is linked to gastric atrophy and cancer. Hp-positive individuals constitute the major reservoir for transmission of infection. There is no ideal treatment for Hp. Hp infection is not cured by a single antibiotic, and sometimes, a combined treatment with three or more antibiotics is ineffective. Atrophic gastritis (AG) is a chronic disease whose main features are atrophy and/or intestinal metaplasia of the gastric glands, which arise from long-standing Hp infection. AG is reportedly linked to an increased risk for gastric cancer, particularly when extensive intestinal metaplasia is present. Active or past Hp infection may be detected by conventional methods in about two-thirds of AG patients. By immunoblotting of sera against Hp whole-cell protein lysates, a previous exposure to Hp infection is detected in all AG patients. According to guidelines, AG patients with Hp positivity should receive eradication treatment. The goals of treatment are as follows: (1) Cure of infection, resolution of inflammation and normalization of gastric functions; (2) possible reversal of atrophic and metaplastic changes of the gastric mucosa; and (3) prevention of gastric cancer. An ideal antibiotic regimen for Hp should achieve eradication rates of approximately 90%, and complex multidrug regimens are required to reach this goal. Amongst the factors associated with treatment failure are high bacterial load, high gastric acidity, Hp strain, smoking, low compliance, overweight, and increasing antibiotic resistance. AG, when involving the corporal mucosa, is linked to reduced gastric acid secretion. At a non-acidic intra-gastric pH, the efficacy of the common treatment regimens combining proton pump inhibitors with one or more antibiotics may not be the same as that observed in patients with Hp gastritis in an acid-producing stomach. Although the efficacy of these therapeutic regimens has been thoroughly tested in subjects with Hp infection, there is a paucity of evidence in the subgroup of patients with AG. Bismuth-based therapy may be an attractive treatment in the specific setting of AG, and specific studies on the efficacy of bismuth-based therapies are needed in patients with AG

    Common Pitfalls in the Management of Patients with Micronutrient Deficiency. Keep in Mind the Stomach

    Get PDF
    Micronutrient deficiencies are relatively common, in particular iron and cobalamin deficiency, and may potentially lead to life-threatening clinical consequences when not promptly recognized and treated, especially in elderly patients. The stomach plays an important role in the homeostasis of some important hematopoietic micronutrients like iron and cobalamin, and probably in others equally important such as ascorbic acid, calcium, and magnesium. A key role is played by the corpus oxyntic mucosa composed of parietal cells whose main function is gastric acid secretion and intrinsic factor production. Gastric acid secretion is necessary for the digestion and absorption of cobalamin and the absorption of iron, calcium, and probably magnesium, and is also essential for the absorption, secretion, and activation of ascorbic acid. Several pathological conditions such as Helicobacter pylori-related gastritis, corpus atrophic gastritis, as well as antisecretory drugs, and gastric surgery may interfere with the normal functioning of gastric oxyntic mucosa and micronutrients homeostasis. Investigation of the stomach by gastroscopy plus biopsies should always be considered in the management of patients with micronutrient deficiencies. The current review focuses on the physiological and pathophysiological aspects of gastric acid secretion and the role of the stomach in iron, cobalamin, calcium, and magnesium deficiency and ascorbate homeostasis

    Relationship between Persistent Gastrointestinal Symptoms and Duodenal Histological Findings after Adequate Gluten-Free Diet. A Gray Area of Celiac Disease Management in Adult Patients

    Get PDF
    A gluten-free diet (GFD) leads to a rapid improvement in gastrointestinal (GI) symptoms, biochemical alterations and duodenal histological damage in the majority of celiac disease (CD) patients. This study aimed to assess the frequency and factors associated with the persistence of GI symptoms/malabsorption signs and their relationship with duodenal histological findings among CD patients on an adequate GFD (mean duration 16 months, range 12-28 months). This longitudinal cohort study included 102 adult CD patients (median age 38.5 years, range 18-76 years, F = 71.6%) diagnosed between 2012 and 2018. A total of 36.3% of the included patients had persistent GI symptoms and/or malabsorption signs (Group 1), while the remaining patients had complete GI well-being without malabsorption signs (Group 2) at the time of histological re-evaluation. The persistence of GI symptoms/signs was associated with a long duration of symptoms/signs before CD diagnosis (>= 5 years) (OR 5.3; 95% CI 1.3-21.8) and the presence of constipation at the time of CD diagnosis (OR 7.5; 95% CI 1.3-42) while for other variables, including age at CD diagnosis, sex, duration of GFD, comorbidities, CD serology positivity and severity of duodenal damage at histological re-evaluation, no association was found. According to our results, the persistence of symptoms/signs is not associated with histological findings, and their relationship could be a gray area in CD management

    Intestinal fructose and glucose metabolism in health and disease

    Get PDF
    The worldwide epidemics of obesity and diabetes have been linked to increased sugar consumption in humans. Here, we review fructose and glucose metabolism, as well as potential molecular mechanisms by which excessive sugar consumption is associated to metabolic diseases and insulin resistance in humans. To this end, we focus on understanding molecular and cellular mechanisms of fructose and glucose transport and sensing in the intestine, the intracellular signaling effects of dietary sugar metabolism, and its impact on glucose homeostasis in health and disease. Finally, the peripheral and central effects of dietary sugars on the gut–brain axis will be reviewed.Spanish MINISTERIO DE ECONOMÍA, INDUSTRIA Y COMPETITIVIDAD, grant numbers SAF2016-77871-C2-1-R and SAF2016-77871-C2-2-R to I.C-C. and G.P. respectively; the EFSD European Research Programme on New Targets for Type 2 Diabetes supported by an educational research grant from MSD to I.C-C. and G.P.; the FUNDACIÓN LA-CAIXA Y FUNDACIÓN CAJA DE BURGOS, grant number CAIXA-UBU001 to G.P

    Natural zeolite (chabazite/phillipsite) dietary supplementation influences faecal microbiota and oxidant status of working dogs

    Get PDF
    We evaluated whether chabazite/phillipsite dietary supplementation might affect the faecal microbiota, oxidant and antioxidant status of working dogs at rest undergone to a trial test. Forty English Setter dogs were involved in two replicate trials. At each replicate, dogs were divided into two homogeneous groups (10 dogs/group). During a period of 28 days, diet was supplemented (Z group) or not supplemented (C group) with chabazite/phillipsite at the dose of 5 g/head/day. On day 29, dogs were subjected to a trial test. Faecal characteristics were assessed at 0 and 29 days (within two hours from the end of the trial test). Faecal consistency was not affected by dietary supplementation (p > .05). On day 29, Lactobacillus spp. and Enterococcus spp. counts were higher and Enterobacteriaceae were lower in Z than in C group (p  .05). Our results suggest that chabazite/phillipsite dietary supplementation, improves the intestinal microbiota ecosystem and may counteract the oxidative damage caused by physical stress in hunting dogs at the beginning of the working season

    Host-microbe interaction in the gastrointestinal tract

    Get PDF
    The gastrointestinal tract is a highly complex organ in which multiple dynamic physiological processes are tightly coordinated while interacting with a dense and extremely diverse microbial population. From establishment in early life, through to host-microbe symbiosis in adulthood, the gut microbiota plays a vital role in our development and health. The effect of the microbiota on gut development and physiology is highlighted by anatomical and functional changes in germ-free mice, affecting the gut epithelium, immune system, and enteric nervous system. Microbial colonisation promotes competent innate and acquired mucosal immune systems, epithelial renewal, barrier integrity, and mucosal vascularisation and innervation. Interacting or shared signalling pathways across different physiological systems of the gut could explain how all these changes are coordinated during postnatal colonisation, or after the introduction of microbiota into germ-free models. The application of cell-based in vitro experimental systems and mathematical modelling can shed light on the molecular and signalling pathways which regulate the development and maintenance of homeostasis in the gut and beyond. This article is protected by copyright. All rights reserved

    Population-Specific Responses to Interspecific Competition in the Gut Microbiota of Two Atlantic Salmon (Salmo salar) Populations

    Get PDF
    The gut microbial community in vertebrates plays a role in nutrient digestion and absorption, development of intestine and immune systems, resistance to infection, regulation of bone mass and even host behavior and can thus impact host fitness. Atlantic salmon (Salmo salar) reintroduction efforts into Lake Ontario, Canada, have been unsuccessful, likely due to competition with non-native salmonids. In this study, we explored interspecific competition effects on the gut microbiota of two Atlantic salmon populations (LaHave and Sebago) resulting from four non-native salmonids. After 10 months of rearing in semi-natural stream tanks under six interspecific competition treatments, we characterized the gut microbiota of 178 Atlantic salmon by parallel sequencing the 16S rRNA gene. We found 3978 bacterial OTUs across all samples. Microbiota alpha diversity and abundance of 27 OTUs significantly differed between the two populations. Interspecific competition reduced relative abundance of potential beneficial bacteria (six genera of lactic acid bacteria) as well as 13 OTUs, but only in the LaHave population, indicating population-specific competition effects. The pattern of gut microbiota response to interspecific competition may reflect local adaptation of the host-microbiota interactions and can be used to select candidate populations for improved species reintroduction success

    Exercise-induced stress behavior, gut-microbiota-brain axis and diet: a systematic review for athletes

    Full text link

    A Pilot Randomized Controlled Trial to Explore Cognitive and Emotional Effects of Probiotics in Fibromyalgia

    Get PDF
    It has recently been found that microbes in the gut may regulate brain processes through the gut microbiota–brain axis, which modulates affection, motivation and higher cognitive functions. According to this finding, the use of probiotics may be a potential treatment to improve physical, psychological and cognitive status in clinical populations with altered microbiota balance such as those with fibromyalgia (FMS). Thus, the aim of the present pilot study with a double-blind, placebo-controlled, randomised design was to test whether a multispecies probiotic may improve cognition, emotional symptoms and functional state in a sample of patients diagnosed with FMS. Pain, impact of FMS, quality of life, anxiety and depressive symptoms were measured during the pre- and post-intervention phases; participants also completed two computerised cognitive tasks to assess impulsive choice and decision-making. Finally, urinary cortisol concentration was determined. To our knowledge, this is the first study that explore the effect of a multispecies probiotic in FMS patients. Our results indicated that probiotics improved impulsivity and decision-making in these patients. However, more research is needed to further explore the potential effects of probiotics on other cognitive functions affected in FMS as well as in other clinical populations
    • …
    corecore