15 research outputs found

    Pressurized liquid extraction of active ingredients (ginsenosides) from medicinal plants using non-ionic surfactant solutions.

    Get PDF
    The feasibility of employing aqueous non-ionic surfactant solutions as an alternative solvent system in pressurized liquid extraction (PLE) is demonstrated for the first time using the roots of American ginseng as model solid samples. When compared to the use of pure water or methanol, the presence of a common non-ionic surfactant (Triton X-100) in water at a concentration above its critical micelle concentration was shown to enhance the amount of pharmacologically active ingredients (ginsenosides) extracted from ginseng roots. The advantages of using aqueous non-surfactant solutions were also demonstrated by comparing extraction performances between ultrasonic-assisted extraction and PLE methods. Furthermore, the combination of PLE and cloud point extraction was shown to be a new and effective approach for the rapid sample preconcentration of herbal materials prior to analysis by high-performance liquid chromatography

    Coprecipitation-assisted coacervative extraction coupled to high-performance liquid chromatography: An approach for determining organophosphorus pesticides in water samples

    No full text
    An analytical methodology based on coprecipitation assisted coacervative extraction cop-CAE) coupled to High Performance Liquid Chromatography and UV-visible detection was developed for analysis of five organophosphorus pesticides (OPPs), including fenitrothion, guthion, parathion, methidathion and chlorpyrifos, in water samples. It is the first time that cop-CAE was used for extraction and preconcentration of OPPs from water for further determination by HPLC. The effects of relevant physic-chemical variables on the analytical response of each OPP (pH, precipitant concentration, surfactant concentration, stirring time, equilibration time and temperature) were studied and optimized, as well as the working conditions for coupling cop-CAE to HPLC-UV. Under optimized conditions, the resulting methodology was as follows: an aliquot of 10 mL of water sample was placed into a 15 mL centrifuge tube where 0.5 mL of sodium citrate 0.1 M, pH 4, 0.08 mL of aluminum sulfate 0.1 mM and 0.7 mL of SDS 0.1 mM were added and homogenized for 8 min using a vortex stirrer to induce the formation of the admicelles. The resulting cloudy solution was kept at 25 °C for 5 min for equilibration. After centrifugation the coacervate rich-phase and supernatant were separated. The resulting supernatant was removed and discarded. A 0.7 mL aliquot of the coacervate rich-phase was transferred to 2 mL vial and dissolved with 300 µL of methanol. An aliquot of 20 µL of the resulting homogeneous solution was injected into the HPLC-UV for analysis. The method detection limits for fenitrothion, parathion, guthion, methidathion and chlorpyrifos under optimized conditions was 83, 35, 35, 57 and 12 ng L-1, respectively. The RSD (%) for the studied analytes were < 3% (n=3). Recovery values ranged from 78 to 93%. The proposed analytical methodology was successfully applied for the analysis of five OPPs in different water sample of Mendoza city.Fil: Mammana, Sabrina Belén. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Berton, Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; ArgentinaFil: Camargo, Alejandra Beatriz. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Biología Agrícola de Mendoza. Universidad Nacional de Cuyo. Facultad de Ciencias Agrarias. Instituto de Biología Agrícola de Mendoza; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Agrarias. Laboratorio de Cromatografía para Agroalimentos ; ArgentinaFil: Lascalea, Gustavo Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; ArgentinaFil: Altamirano, Jorgelina Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentin
    corecore