113 research outputs found
Generalization of auditory expertise in audio engineers and instrumental musicians
From auditory perception to general cognition, the ability to play a musical instrument has been associated with skills both related and unrelated to music. However, it is unclear if these effects are bound to the specific characteristics of musical instrument training, as little attention has been paid to other populations such as audio engineers and designers whose auditory expertise may match or surpass that of musicians in specific auditory tasks or more naturalistic acoustic scenarios. We explored this possibility by comparing students of audio engineering (n = 20) to matched conservatory-trained instrumentalists (n = 24) and to naive controls (n = 20) on measures of auditory discrimination, auditory scene analysis, and speech in noise perception. We found that audio engineers and performing musicians had generally lower psychophysical thresholds than controls, with pitch perception showing the largest effect size. Compared to controls, audio engineers could better memorise and recall auditory scenes composed of non-musical sounds, whereas instrumental musicians performed best in a sustained selective attention task with two competing streams of tones. Finally, in a diotic speech-in-babble task, musicians showed lower signal-to-noise-ratio thresholds than both controls and engineers; however, a follow-up online study did not replicate this musician advantage. We also observed differences in personality that might account for group-based self-selection biases. Overall, we showed that investigating a wider range of forms of auditory expertise can help us corroborate (or challenge) the specificity of the advantages previously associated with musical instrument training
Investigating the importance of self-theories of intelligence and musicality for students' academic and musical achievement
Musical abilities and active engagement with music have been shown to be positively associated with many cognitive abilities as well as social skills and academic performance in secondary school students. While there is evidence from intervention studies that musical training can be a cause of these positive relationships, recent findings in the literature have suggested that other factors, such as genetics, family background or personality traits, might also be contributing factors. In addition, there is mounting evidence that self-concepts and beliefs can affect academic performance independently of intellectual ability. Students who believe that intelligence is malleable are more likely to attribute poor academic performances to effort rather than ability, and are more likely to take remedial action to improve their performance. However, it is currently not known whether student's beliefs about the nature of musical talent also influence the development of musical abilities in a similar fashion. Therefore, this study introduces a short self-report measure termed “Musical Self-Theories and Goals,” closely modeled on validated measures for self-theories in academic scenarios. Using this measure the study investigates whether musical self-theories are related to students' musical development as indexed by their concurrent musical activities and their performance on a battery of listening tests. We use data from a cross-sectional sample of 313 secondary school students to construct a network model describing the relationships between self-theories and academic as well as musical outcome measures, while also assessing potential effects of intelligence and the Big Five personality dimensions. Results from the network model indicate that self-theories of intelligence and musicality are closely related. In addition, both kinds of self-theories are connected to the students' academic achievement through the personality dimension conscientiousness and academic effort. Finally, applying the do-calculus method to the network model we estimate that the size of the assumed causal effects between musical self-theories and academic achievement lie between 0.07 and 0.15 standard deviations
Laser Induced Breakdown and Bubble Cavitation
This work presents the results of an experimental investigation of laser induced cavitation. We find that the breakdown plasma can be randomly split in different branches depending on the laser energy and on the focusing angle. This behavior strongly affects the successive dynamics of the bubble and limits the reproducibility of the process. Using a custom fiber optic hydrophone, we correlate the elongated shape of the plasma with the number of shock waves detected at breakdown. The conditions for single breakdown shockwave emission and spherical expansion are thus identified, thus improving the reproducibility of the laser-induced cavitation bubble
L-Acetylcarnitine causes analgesia in mice modeling Fabry disease by up-regulating type-2 metabotropic glutamate receptors
Fabry disease (FD) is a X-linked lysosomal storage disorder caused by deficient function of the alpha-galactosidase A (α-GalA) enzyme. α-GalA deficiency leads to multisystemic clinical manifestations caused by the preferential accumulation of globotriaosylceramide (Gb3). A hallmark symptom of FD patients is neuropathic pain that appears in the early stage of the disease as a result of peripheral small fiber damage. Previous studies have shown that Acetyl-L-carnitine (ALC) has neuroprotective, neurotrophic, and analgesic activity in animal models of neuropathic pain. To study the action of ALC on neuropathic pain associated with FD, we treated α-GalA gene null mice (α-GalA(-/0)) with ALC for 30 days. In α-Gal KO mice ALC treatment induced acute and long-lasting analgesia, which persisted 1 month after drug withdrawal. This effect was antagonized by single administration of LY341495, an orthosteric antagonist of mGlu2/3 metabotropic glutamate receptors. We also found an up-regulation of mGlu2 receptors in cultured DRG neurons isolated from 30-day ALC treated α-GalA KO mice. However, the up-regulation of mGlu2 receptors was no longer present in DRG neurons isolated 30 days after the end of treatment. Taken together, these findings suggest that ALC induces analgesia in an animal model of FD by up-regulating mGlu2 receptors, and that analgesia is maintained by additional mechanisms after ALC withdrawal. ALC might represent a valuable pharmacological strategy to reduce pain in FD patients
Detection of subtype-specific breast cancer surface protein biomarkers via a novel transcriptomics approach
Background: Cell-surface proteins have been widely used as diagnostic and prognostic markers in cancer research and as targets for the development of anticancer agents. So far, very few attempts have been made to characterize the surfaceome of patients with breast cancer, particularly in relation with the current molecular breast cancer (BRCA) classification. In this view, we developed a new computational method to infer cell-surface protein activities from transcriptomics data, termed ‘SURFACER’. Methods: Gene expression data from GTEx were used to build a normal breast network model as input to infer differential cell-surface proteins activity in BRCA tissue samples retrieved from TCGA versus normal samples. Data were stratified according to the PAM50 transcriptional subtypes (Luminal A, Luminal B, HER2 and Basal), while unsupervised clustering techniques were applied to define BRCA subtypes according to cell-surface proteins activity. Results: Our approach led to the identification of 213 PAM50 subtypes-specific deregulated surface genes and the definition of five BRCA subtypes, whose prognostic value was assessed by survival analysis, identifying a cell-surface activity configuration at increased risk. The value of the SURFACER method in BRCA genotyping was tested by evaluating the performance of 11 different machine learning classification algorithms. Conclusions: BRCA patients can be stratified into five surface activity-specific groups having the potential to identify subtype-specific actionable targets to design tailored targeted therapies or for diagnostic purposes. SURFACER-defined subtypes show also a prognostic value, identifying surface-activity profiles at higher risk
LRRC8A is essential for swelling-activated chloride current and for regulatory volume decrease in astrocytes
Consolidated evidence indicates that astroglial cells are critical in the homeostatic regulation of cellular volume by means of ion channels and aquaporin-4. Volume-regulated anion channel (VRAC) is the chloride channel that is activated upon cell swelling and critically contributes to cell volume regulation in astrocytes. The molecular identity of VRAC has been recently defined, revealing that it belongs to the leucine-rich repeat-containing 8 (LRRC8) protein family. However, there is a lack of evidence demonstrating that LRRC8A underpins VRAC currents in astrocyte. Nonetheless, direct evidence of the role of LRRC8A in astrocytic regulatory volume decrease remains to be proved. Here, we aim to bridge this gap in knowledge by combining RNA interference specific for LRRC8A with patch-clamp analyses and a water-permeability assay. We demonstrated that LRRC8A molecular expression is essential for swelling-activated chloride current via VRAC in primary-cultured cortical astrocytes. The knockdown of LRRC8A with a specific short interference RNA abolished the recovery of the cell volume after swelling induced by hypotonic challenge. In addition, immunoblotting, immunofluorescence, confocal imaging, and immunogold electron microscopy demonstrated that LRRC8A is expressed in the plasma membrane of primary cortical astrocytes and in situ in astrocytes at the perivascular interface with endothelial cells. Collectively, our results suggest that LRRC8A is an essential subunit of VRAC and a key factor for astroglial volume homeostasis.-Formaggio, F., Saracino, E., Mola, M. G., Rao, S. B., Amiry-Moghaddam, M., Muccini, M., Zamboni, R., Nicchia, G. P., Caprini, M., Benfenati, V. LRRC8A is essential for swelling-activated chloride current and for regulatory volume decrease in astrocytes
AQP4-independent TRPV4 modulation of plasma membrane water permeability
: Despite of the major role of aquaporin (AQP) water channels in controlling transmembrane water fluxes, alternative ways for modulating water permeation have been proposed. In the Central Nervous System (CNS), Aquaporin-4 (AQP4) is reported to be functionally coupled with the calcium-channel Transient-Receptor Potential Vanilloid member-4 (TRPV4), which is controversially involved in cell volume regulation mechanisms and water transport dynamics. The present work aims to investigate the selective role of TRPV4 in regulating plasma membrane water permeability in an AQP4-independent way. Fluorescence-quenching water transport experiments in Aqp4-/- astrocytes revealed that cell swelling rate is significantly increased upon TRPV4 activation and in the absence of AQP4. The biophysical properties of TRPV4-dependent water transport were therefore assessed using the HEK-293 cell model. Calcein quenching experiments showed that chemical and thermal activation of TRPV4 overexpressed in HEK-293 cells leads to faster swelling kinetics. Stopped-flow light scattering water transport assay was used to measure the osmotic permeability coefficient (Pf, cm/s) and activation energy (Ea, kcal/mol) conferred by TRPV4. Results provided evidence that although the Pf measured upon TRPV4 activation is lower than the one obtained in AQP4-overexpressing cells (Pf of AQP4 = 0.01667 ± 0.0007; Pf of TRPV4 = 0.002261 ± 0.0004; Pf of TRPV4 + 4αPDD = 0.007985 ± 0.0006; Pf of WT = 0.002249 ± 0.0002), along with activation energy values (Ea of AQP4 = 0.86 ± 0.0006; Ea of TRPV4 + 4αPDD = 2.73 ± 1.9; Ea of WT = 8.532 ± 0.4), these parameters were compatible with a facilitated pathway for water movement rather than simple diffusion. The possibility to tune plasma membrane water permeability more finely through TRPV4 might represent a protective mechanism in cells constantly facing severe osmotic challenges to avoid the potential deleterious effects of the rapid cell swelling occurring via AQP channels
Primordial magnetic field constraints from the end of reionization
Primordial magnetic fields generated in the early universe are subject of
considerable investigation, and observational limits on their strength are
required to constrain the theory. Due to their impact on the reionization
process, the strength of primordial fields can be limited using the latest data
on reionization and the observed UV-luminosity function of high-redshift
galaxies. Given the steep faint-end slope of the luminosity function, faint
galaxies contribute substantial ionizing photons, and the low-luminosity cutoff
has an impact on the total budget thereof. Magnetic pressure from primordial
fields affects such cutoff by preventing collapse in halos with mass below
10^{10} M_solar (B_0 / 3 nG)^3, with B_0 the co-moving field strength. In this
letter, the implications of these effects are consistently incorporated in a
simplified model for reionization, and the uncertainties due to the
cosmological parameters, the reionization parameters and the observed UV
luminosity function are addressed. We show that the observed ionization degree
at z\sim7 leads to the strongest upper limit of B_0\lsim 2-3nG. Stronger limits
could follow from measurements of high ionization degree at z>7.Comment: 6 pages, 3 figures, resubmitted to MNRAS letter
Cell Volume Regulation Mechanisms in Differentiated Astrocytes
The ability of astrocytes to control extracellular volume homeostasis is critical for brain function and pathology. Uncovering the mechanisms of cell volume regulation by astrocytes will be important for identifying novel therapeutic targets for neurological conditions, such as those characterized by imbalances to hydro saline challenges (as in edema) or by altered cell volume regulation (as in glioma). One major challenge in studying the astroglial membrane channels involved in volume homeostasis in cell culture model systems is that the expression patterns of these membrane channels do not resemble those observed in vivo. In our previous study, we demonstrated that rat primary astrocytes grown on nanostructured interfaces based on hydrotalcite-like compounds (HTlc) in vitro are differentiated and display molecular and functional properties of in vivo astrocytes, such as the functional expression of inwardly rectifying K+ channel (Kir 4.1) and Aquaporin-4 (AQP4) at the astrocytic microdomain. Here, we take advantage of the properties of differentiated primary astrocytes in vitro to provide an insight into the mechanism underpinning astrocytic cell volume regulation and its correlation with the expression and function of AQP4, Transient Receptor Potential Vanilloid 4
(TRPV4), and Volume Regulated Anion Channel (VRAC)
Quantitative MRI provides markers of intra-, inter-regional, and age-related differences in young adult cortical microstructure
Measuring the structural composition of the cortex is critical to understanding typical development, yet few investigations in humans have charted markers in vivo that are sensitive to tissue microstructural attributes. Here, we used a well-validated quantitative MR protocol to measure four parameters (R1, MT, R2*, PD*) that differ in their sensitivity to facets of the tissue microstructural environment (R1, MT: myelin, macromolecular content; R2*: myelin, paramagnetic ions, i.e., iron; PD*: free water content). Mapping these parameters across cortical regions in a young adult cohort (18–39 years, N = 93) revealed expected patterns of increased macromolecular content as well as reduced tissue water content in primary and primary adjacent cortical regions. Mapping across cortical depth within regions showed decreased expression of myelin and related processes – but increased tissue water content – when progressing from the grey/white to the grey/pial boundary, in all regions. Charting developmental change in cortical microstructure cross-sectionally, we found that parameters with sensitivity to tissue myelin (R1 & MT) showed linear increases with age across frontal and parietal cortex (change 0.5–1.0% per year). Overlap of robust age effects for both parameters emerged in left inferior frontal, right parietal and bilateral pre-central regions. Our findings afford an improved understanding of ontogeny in early adulthood and offer normative quantitative MR data for inter- and intra-cortical composition, which may be used as benchmarks in further studies
- …