66 research outputs found

    Cord cross-sectional area at foramen magnum as a correlate of disability in amyotrophic lateral sclerosis

    Get PDF
    Spinal cord atrophy is one of the hallmarks of amyotrophic lateral sclerosis (ALS); however, it is not routinely assessed in routine clinical practice. In the present study, we evaluated whether spinal cord cross-sectional area measured at the foramen magnum level using a magnetic resonance imaging head scan represents a clinically meaningful measure to be added to the whole-brain volume assessment. Using an active surface approach, we measured the cord area at the foramen magnum and brain parenchymal fraction on T1-weighted three-dimensional spoiled gradient recalled head scans in two groups of subjects: 23 patients with ALS (males/females, 13/10; mean\u2009\ub1\u2009standard deviation [SD] age 61.7\u2009\ub1\u200910.3 years; median ALS Functional Rating Scale-Revised score 39, range 27-46) and 18 age- and sex-matched healthy volunteers (mean\u2009\ub1\u2009SD age 55.7\u2009\ub1\u200910.2 years). Spinal cord area at the foramen magnum was significantly less in patients than in control subjects and was significantly correlated with disability as measured with the ALS Functional Rating Scale-Revised (\u3c1\u2009=\u20090.593, p\u2009<\u2009 0.005). This correlation remained significant after taking into account inter-individual differences in brain parenchymal fraction (\u3c1\u2009=\u20090.684, p\u2009<\u2009 0.001). Our data show that spinal cord area at the foramen magnum correlates with disability in ALS independently of whole-brain atrophy, thus indicating its potential as a disease biomarker

    The HFE p.H63D (p.His63Asp) Polymorphism Is a Modifier of ALS Outcome in Italian and French Patients with SOD1 Mutations

    Get PDF
    Background: Data from published studies about the effect of HFE polymorphisms on ALS risk, phenotype, and survival are still inconclusive. We aimed at evaluating whether the p.H63D polymorphism is a modifier of phenotype and survival in SOD1-mutated patients. Methods: We included 183 SOD1-mutated ALS patients. Mutations were classified as severe or mild according to the median survival of the study population. Patients were screened for the HFE p.H63D polymorphism. Survival was calculated using the Kaplan-Meier modeling, and differences were measured by the log-rank test. Multivariable analysis was performed with the Cox proportional hazards model (stepwise backward). Results: SOD1 severe mutation carriers show more frequent familial history for ALS and shorter survival compared to mild mutation carriers. Carriers and non-carriers of the p.H63D polymorphism did not differ in terms of sex ratio, frequency of positive familial history, age at onset, and bulbar/spinal ratio. In univariate and in Cox multivariable analysis using sex, age at onset, site of onset, family history, country of origin, and mutation severity as covariates, p.H63D carriers had a longer survival (p = 0.034 and p = 0.004). Conclusions: We found that SOD1-mutated ALS patients carrying the p.H63D HFE polymorphism have a longer survival compared to non-carriers, independently of sex, age and site of onset, family history, nation of origin, and severity of mutations, suggesting a possible role as disease progression modifier for the p.H63D HFE polymorphism in SOD1-ALS

    Effect of RNS60 in amyotrophic lateral sclerosis: a phase II multicentre, randomized, double-blind, placebo-controlled trial

    Get PDF
    Background and purpose Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with limited treatment options. RNS60 is an immunomodulatory and neuroprotective investigational product that has shown efficacy in animal models of ALS and other neurodegenerative diseases. Its administration has been safe and well tolerated in ALS subjects in previous early phase trials. Methods This was a phase II, multicentre, randomized, double-blind, placebo-controlled, parallel-group trial. Participants diagnosed with definite, probable or probable laboratory-supported ALS were assigned to receive RNS60 or placebo administered for 24 weeks intravenously (375 ml) once a week and via nebulization (4 ml/day) on non-infusion days, followed by an additional 24 weeks off-treatment. The primary objective was to measure the effects of RNS60 treatment on selected biomarkers of inflammation and neurodegeneration in peripheral blood. Secondary objectives were to measure the effect of RNS60 on functional impairment (ALS Functional Rating Scale-Revised), a measure of self-sufficiency, respiratory function (forced vital capacity, FVC), quality of life (ALS Assessment Questionnaire-40, ALSAQ-40) and survival. Tolerability and safety were assessed. Results Seventy-four participants were assigned to RNS60 and 73 to placebo. Assessed biomarkers did not differ between arms. The mean rate of decline in FVC and the eating and drinking domain of ALSAQ-40 was slower in the RNS60 arm (FVC, difference 0.41 per week, standard error 0.16, p = 0.0101; ALSAQ-40, difference -0.19 per week, standard error 0.10, p = 0.0319). Adverse events were similar in the two arms. In a post hoc analysis, neurofilament light chain increased over time in bulbar onset placebo participants whilst remaining stable in those treated with RNS60. Conclusions The positive effects of RNS60 on selected measures of respiratory and bulbar function warrant further investigation

    Withdrawal of mechanical ventilation in amyotrophic lateral sclerosis patients: a multicenter Italian survey

    Get PDF
    Background: Law 219/2017 was approved in Italy in December 2017, after a years-long debate on the autonomy of healthcare choices. This Law, for the first time in Italian legislation, guarantees the patient's right to request for withdrawal of life-sustaining treatments, including mechanical ventilation (MV). Objective: To investigate the current status of MV withdrawal in amyotrophic lateral sclerosis (ALS) patients in Italy and to assess the impact of Law 219/2017 on this practice. Methods: We conducted a Web-based survey, addressed to Italian neurologists with expertise in ALS care, and members of the Motor Neuron Disease Study Group of the Italian Society of Neurology. Results: Out of 40 ALS Italian centers, 34 (85.0%) responded to the survey. Law 219/2017 was followed by an increasing trend in MV withdrawals, and a significant increase of neurologists involved in this procedure (p 0.004). However, variations across Italian ALS centers were observed, regarding the inconsistent involvement of community health services and palliative care (PC) services, and the intervention and composition of the multidisciplinary team. Conclusions: Law 219/2017 has had a positive impact on the practice of MV withdrawal in ALS patients in Italy. The recent growing public attention on end-of-life care choices, along with the cultural and social changes in Italy, requires further regulatory frameworks that strengthen tools for self-determination, increased investment of resources in community and PC health services, and practical recommendations and guidelines for health workers involved

    Association of Variants in the SPTLC1 Gene With Juvenile Amyotrophic Lateral Sclerosis

    Get PDF
    Importance: Juvenile amyotrophic lateral sclerosis (ALS) is a rare form of ALS characterized by age of symptom onset less than 25 years and a variable presentation.Objective: To identify the genetic variants associated with juvenile ALS.Design, Setting, and Participants: In this multicenter family-based genetic study, trio whole-exome sequencing was performed to identify the disease-associated gene in a case series of unrelated patients diagnosed with juvenile ALS and severe growth retardation. The patients and their family members were enrolled at academic hospitals and a government research facility between March 1, 2016, and March 13, 2020, and were observed until October 1, 2020. Whole-exome sequencing was also performed in a series of patients with juvenile ALS. A total of 66 patients with juvenile ALS and 6258 adult patients with ALS participated in the study. Patients were selected for the study based on their diagnosis, and all eligible participants were enrolled in the study. None of the participants had a family history of neurological disorders, suggesting de novo variants as the underlying genetic mechanism.Main Outcomes and Measures: De novo variants present only in the index case and not in unaffected family members.Results: Trio whole-exome sequencing was performed in 3 patients diagnosed with juvenile ALS and their parents. An additional 63 patients with juvenile ALS and 6258 adult patients with ALS were subsequently screened for variants in the SPTLC1 gene. De novo variants in SPTLC1 (p.Ala20Ser in 2 patients and p.Ser331Tyr in 1 patient) were identified in 3 unrelated patients diagnosed with juvenile ALS and failure to thrive. A fourth variant (p.Leu39del) was identified in a patient with juvenile ALS where parental DNA was unavailable. Variants in this gene have been previously shown to be associated with autosomal-dominant hereditary sensory autonomic neuropathy, type 1A, by disrupting an essential enzyme complex in the sphingolipid synthesis pathway.Conclusions and Relevance: These data broaden the phenotype associated with SPTLC1 and suggest that patients presenting with juvenile ALS should be screened for variants in this gene.</p

    Genome-wide Analyses Identify KIF5A as a Novel ALS Gene

    Get PDF
    To identify novel genes associated with ALS, we undertook two lines of investigation. We carried out a genome-wide association study comparing 20,806 ALS cases and 59,804 controls. Independently, we performed a rare variant burden analysis comparing 1,138 index familial ALS cases and 19,494 controls. Through both approaches, we identified kinesin family member 5A (KIF5A) as a novel gene associated with ALS. Interestingly, mutations predominantly in the N-terminal motor domain of KIF5A are causative for two neurodegenerative diseases: hereditary spastic paraplegia (SPG10) and Charcot-Marie-Tooth type 2 (CMT2). In contrast, ALS-associated mutations are primarily located at the C-terminal cargo-binding tail domain and patients harboring loss-of-function mutations displayed an extended survival relative to typical ALS cases. Taken together, these results broaden the phenotype spectrum resulting from mutations in KIF5A and strengthen the role of cytoskeletal defects in the pathogenesis of ALS.Peer reviewe

    Bilateral motor and premotor cortex hypometabolism in a case of Mills syndrome

    No full text
    Mills syndrome is a rare condition characterized by slowly progressive upper motor neuron-predominant hemiparesis, belonging to the motor neuron disorder spectrum. Predominantly unilateral primary degeneration of corticospinal pathways is the supposed underlying pathophysiological mechanism. By means of (18)F-Fluorodeoxyglucose Positron Emission Tomography, we found significant (Statistical Parametric Mapping, SPM, analysis versus controls, uncorrected p < 0.005 at voxel level, p < 0.05 at cluster level, corrected for multiple comparisons) hypometabolism in motor and premotor areas of both hemispheres, mainly contralateral to the limbs weakness in a patient with a 10-year history of slowly progressive left-sided hemiparesis. No significant grey matter loss was found on voxel based morphometry (SPM). This supports the hypothesis of a slowly progressive neurodegenerative process involving primary motor and premotor cortex
    • …
    corecore