119 research outputs found

    Notch1 Pathway Activity Determines the Regulatory Role of Cancer-Associated Fibroblasts in Melanoma Growth and Invasion

    Get PDF
    Cancer-associated fibroblasts (CAF) play a crucial role in regulating cancer progression, yet the molecular determinant that governs the tumor regulatory role of CAF remains unknown. Using a mouse melanoma model in which exogenous melanoma cells were grafted on the skin of two lines of mice where the genetic activation or inactivation of Notch1 signaling specifically occurs in natural host stromal fibroblasts, we demonstrated that Notch1 pathway activity could determine the tumor-promoting or tumor-suppressing phenotype in CAF. CAF carrying elevated Notch1 activity significantly inhibited melanoma growth and invasion, while those with a null Notch1 promoted melanoma invasion. These findings identify the Notch1 pathway as a molecular determinant that controls the regulatory role of CAF in melanoma skin growth and invasion, unveiling Notch1 signaling as a potential therapeutic target for melanoma and potentially other solid tumors

    Notch3/Jagged1 Circuitry Reinforces Notch Signaling and Sustains T-ALL

    Get PDF
    AbstractDeregulated Notch signaling has been extensively linked to T-cell acute lymphoblastic leukemia (T-ALL). Here, we show a direct relationship between Notch3 receptor and Jagged1 ligand in human cell lines and in a mouse model of T-ALL. We provide evidence that Notch-specific ligand Jagged1 is a new Notch3 signaling target gene. This essential event justifies an aberrant Notch3/Jagged1 cis-expression inside the same cell. Moreover, we demonstrate in Notch3-IC–overexpressing T lymphoma cells that Jagged1 undergoes a raft-associated constitutive processing. The proteolytic cleavage allows the Jagged1 intracellular domain to empower Notch signaling activity and to increase the transcriptional activation of Jagged1 itself (autocrine effect). On the other hand, the release of the soluble Jagged1 extracellular domain has a positive impact on activating Notch signaling in adjacent cells (paracrine effect), finally giving rise to a Notch3/Jagged1 auto-sustaining loop that supports the survival, proliferation, and invasion of lymphoma cells and contributes to the development and progression of Notch-dependent T-ALL. These observations are also supported by a study conducted on a cohort of patients in which Jagged1 expression is associated to adverse prognosis

    The E3 ubiquitin ligase component, Cereblon, is an evolutionarily conserved regulator of Wnt signaling

    Get PDF
    Immunomodulatory drugs (IMiDs) are important for the treatment of multiple myeloma and myelodysplastic syndrome. Binding of IMiDs to Cereblon (CRBN), the substrate receptor of the CRL4CRBN E3 ubiquitin ligase, induces cancer cell death by targeting key neo-substrates for degradation. Despite this clinical significance, the physiological regulation of CRBN remains largely unknown. Herein we demonstrate that Wnt, the extracellular ligand of an essential signal transduction pathway, promotes the CRBN-dependent degradation of a subset of proteins. These substrates include Casein kinase 1α (CK1α), a negative regulator of Wnt signaling that functions as a key component of the β-Catenin destruction complex. Wnt stimulation induces the interaction of CRBN with CK1α and its resultant ubiquitination, and in contrast with previous reports does so in the absence of an IMiD. Mechanistically, the destruction complex is critical in maintaining CK1α stability in the absence of Wnt, and in recruiting CRBN to target CK1α for degradation in response to Wnt. CRBN is required for physiological Wnt signaling, as modulation of CRBN in zebrafish and Drosophila yields Wnt-driven phenotypes. These studies demonstrate an IMiD-independent, Wnt-driven mechanism of CRBN regulation and provide a means of controlling Wnt pathway activity by CRBN, with relevance for development and disease

    State Control and the Effects of Foreign Relations on Bilateral Trade

    Get PDF
    Do states use trade to reward and punish partners? WTO rules and the pressures of globalization restrict states’ capacity to manipulate trade policies, but we argue that governments can link political goals with economic outcomes using less direct avenues of influence over firm behavior. Where governments intervene in markets, politicization of trade is likely to occur. In this paper, we examine one important form of government control: state ownership of firms. Taking China and India as examples, we use bilateral trade data by firm ownership type, as well as measures of bilateral political relations based on diplomatic events and UN voting to estimate the effect of political relations on import and export flows. Our results support the hypothesis that imports controlled by state-owned enterprises (SOEs) exhibit stronger responsiveness to political relations than imports controlled by private enterprises. A more nuanced picture emerges for exports; while India’s exports through SOEs are more responsive to political tensions than its flows through private entities, the opposite is true for China. This research holds broader implications for how we should think about the relationship between political and economic relations going forward, especially as a number of countries with partially state-controlled economies gain strength in the global economy

    Improving the effectiveness of psychological interventions for depression and anxiety in the cardiac rehabilitation pathway using group-based metacognitive therapy (PATHWAY Group MCT) : study protocol for a randomised controlled trial

    Get PDF
    BACKGROUND: Anxiety and depression are prevalent among cardiac rehabilitation patients but pharmacological and psychological treatments have limited effectiveness in this group. Furthermore, psychological interventions have not been systematically integrated into cardiac rehabilitation services despite being a strategic priority for the UK National Health Service. A promising new treatment, metacognitive therapy, may be well-suited to the needs of cardiac rehabilitation patients and has the potential to improve outcomes. It is based on the metacognitive model, which proposes that a thinking style dominated by rumination, worry and threat monitoring maintains emotional distress. Metacognitive therapy is highly effective at reducing this thinking style and alleviating anxiety and depression in mental health settings. This trial aims to evaluate the effectiveness and cost-effectiveness of group-based metacognitive therapy for cardiac rehabilitation patients with elevated anxiety and/or depressive symptoms. METHODS/DESIGN: The PATHWAY Group-MCT trial is a multicentre, two-arm, single-blind, randomised controlled trial comparing the clinical- and cost-effectiveness of group-based metacognitive therapy plus usual cardiac rehabilitation to usual cardiac rehabilitation alone. Cardiac rehabilitation patients (target sample n = 332) with elevated anxiety and/or depressive symptoms will be recruited across five UK National Health Service Trusts. Participants randomised to the intervention arm will receive six weekly sessions of group-based metacognitive therapy delivered by either cardiac rehabilitation professionals or research nurses. The intervention and control groups will both be offered the usual cardiac rehabilitation programme within their Trust. The primary outcome is severity of anxiety and depressive symptoms at 4-month follow-up measured by the Hospital Anxiety and Depression Scale total score. Secondary outcomes are severity of anxiety/depression at 12-month follow-up, health-related quality of life, severity of post-traumatic stress symptoms and strength of metacognitive beliefs at 4- and 12-month follow-up. Qualitative interviews will help to develop an account of barriers and enablers to the effectiveness of the intervention. DISCUSSION: This trial will evaluate the effectiveness and cost-effectiveness of group-based metacognitive therapy in alleviating anxiety and depression in cardiac rehabilitation patients. The therapy, if effective, offers the potential to improve psychological wellbeing and quality of life in this large group of patients. TRIAL REGISTRATION: UK Clinical Trials Gateway, ISRCTN74643496 , Registered on 8 April 2015

    The Athena X-ray Integral Field Unit: a consolidated design for the system requirement review of the preliminary definition phase

    Full text link
    The Athena X-ray Integral Unit (X-IFU) is the high resolution X-ray spectrometer, studied since 2015 for flying in the mid-30s on the Athena space X-ray Observatory, a versatile observatory designed to address the Hot and Energetic Universe science theme, selected in November 2013 by the Survey Science Committee. Based on a large format array of Transition Edge Sensors (TES), it aims to provide spatially resolved X-ray spectroscopy, with a spectral resolution of 2.5 eV (up to 7 keV) over an hexagonal field of view of 5 arc minutes (equivalent diameter). The X-IFU entered its System Requirement Review (SRR) in June 2022, at about the same time when ESA called for an overall X-IFU redesign (including the X-IFU cryostat and the cooling chain), due to an unanticipated cost overrun of Athena. In this paper, after illustrating the breakthrough capabilities of the X-IFU, we describe the instrument as presented at its SRR, browsing through all the subsystems and associated requirements. We then show the instrument budgets, with a particular emphasis on the anticipated budgets of some of its key performance parameters. Finally we briefly discuss on the ongoing key technology demonstration activities, the calibration and the activities foreseen in the X-IFU Instrument Science Center, and touch on communication and outreach activities, the consortium organisation, and finally on the life cycle assessment of X-IFU aiming at minimising the environmental footprint, associated with the development of the instrument. Thanks to the studies conducted so far on X-IFU, it is expected that along the design-to-cost exercise requested by ESA, the X-IFU will maintain flagship capabilities in spatially resolved high resolution X-ray spectroscopy, enabling most of the original X-IFU related scientific objectives of the Athena mission to be retained. (abridged).Comment: 48 pages, 29 figures, Accepted for publication in Experimental Astronomy with minor editin

    The Athena X-ray Integral Field Unit: a consolidated design for the system requirement review of the preliminary definition phase

    Get PDF
    The Athena X-ray Integral Unit (X-IFU) is the high resolution X-ray spectrometer studied since 2015 for flying in the mid-30s on the Athena space X-ray Observatory. Athena is a versatile observatory designed to address the Hot and Energetic Universe science theme, as selected in November 2013 by the Survey Science Committee. Based on a large format array of Transition Edge Sensors (TES), X-IFU aims to provide spatially resolved X-ray spectroscopy, with a spectral resolution of 2.5 eV (up to 7 keV) over a hexagonal field of view of 5 arc minutes (equivalent diameter). The X-IFU entered its System Requirement Review (SRR) in June 2022, at about the same time when ESA called for an overall X-IFU redesign (including the X-IFU cryostat and the cooling chain), due to an unanticipated cost overrun of Athena. In this paper, after illustrating the breakthrough capabilities of the X-IFU, we describe the instrument as presented at its SRR (i.e. in the course of its preliminary definition phase, so-called B1), browsing through all the subsystems and associated requirements. We then show the instrument budgets, with a particular emphasis on the anticipated budgets of some of its key performance parameters, such as the instrument efficiency, spectral resolution, energy scale knowledge, count rate capability, non X-ray background and target of opportunity efficiency. Finally, we briefly discuss the ongoing key technology demonstration activities, the calibration and the activities foreseen in the X-IFU Instrument Science Center, touch on communication and outreach activities, the consortium organisation and the life cycle assessment of X-IFU aiming at minimising the environmental footprint, associated with the development of the instrument. Thanks to the studies conducted so far on X-IFU, it is expected that along the design-to-cost exercise requested by ESA, the X-IFU will maintain flagship capabilities in spatially resolved high resolution X-ray spectroscopy, enabling most of the original X-IFU related scientific objectives of the Athena mission to be retained. The X-IFU will be provided by an international consortium led by France, The Netherlands and Italy, with ESA member state contributions from Belgium, Czech Republic, Finland, Germany, Poland, Spain, Switzerland, with additional contributions from the United States and Japan.The French contribution to X-IFU is funded by CNES, CNRS and CEA. This work has been also supported by ASI (Italian Space Agency) through the Contract 2019-27-HH.0, and by the ESA (European Space Agency) Core Technology Program (CTP) Contract No. 4000114932/15/NL/BW and the AREMBES - ESA CTP No.4000116655/16/NL/BW. This publication is part of grant RTI2018-096686-B-C21 funded by MCIN/AEI/10.13039/501100011033 and by “ERDF A way of making Europe”. This publication is part of grant RTI2018-096686-B-C21 and PID2020-115325GB-C31 funded by MCIN/AEI/10.13039/501100011033

    Metacognitive therapy home-based self-help for cardiac rehabilitation patients experiencing anxiety and depressive symptoms : study protocol for a feasibility randomised controlled trial (PATHWAY Home-MCT)

    Get PDF
    BACKGROUND: Anxiety and depression are common among patients attending cardiac rehabilitation services. Currently available pharmacological and psychological interventions have limited effectiveness in this population. There are presently no psychological interventions for anxiety and depression integrated into cardiac rehabilitation services despite emphasis in key UK National Health Service policy. A new treatment, metacognitive therapy, is highly effective at reducing anxiety and depression in mental health settings. The principal aims of the current study are (1) to evaluate the acceptability of delivering metacognitive therapy in a home-based self-help format (Home-MCT) to cardiac rehabilitation patients experiencing anxiety and depressive symptoms and conduct a feasibility trial of Home-MCT plus usual cardiac rehabilitation compared to usual cardiac rehabilitation; and (2) to inform the design and sample size for a full-scale trial. METHODS: The PATHWAY Home-MCT trial is a single-blind feasibility randomised controlled trial comparing usual cardiac rehabilitation (control) versus usual cardiac rehabilitation plus home-based self-help metacognitive therapy (intervention). Economic and qualitative evaluations will be embedded within the trial. Participants will be assessed at baseline and followed-up at 4 and 12 months. Patients who have been referred to cardiac rehabilitation programmes and have a score of ≥ 8 on the anxiety and/or depression subscales of the Hospital Anxiety and Depression Scale will be invited to take part in the study and written informed consent will be obtained. Participants will be recruited from the National Health Service in the UK. A minimum of 108 participants will be randomised to the intervention and control arms in a 1:1 ratio. DISCUSSION: The Home-MCT feasibility randomised controlled trial will provide evidence on the acceptability of delivering metacognitive therapy in a home-based self-help format for cardiac rehabilitation patients experiencing symptoms of anxiety and/or depression and on the feasibility and design of a full-scale trial. In addition, it will provide provisional point estimates, with appropriately wide measures of uncertainty, relating to the effectiveness and cost-effectiveness of the intervention. TRIAL REGISTRATION: ClinicalTrials.gov, NCT03129282 , Submitted to Registry: 11 April 2017

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries
    corecore