7 research outputs found

    Tratamiento biológico para la remoción de compuestos organoclorados en los efluentes provenientes de la industria petroquímica

    No full text
    Tratamiento biológico para la remoción de compuestos organoclorados en los efluentes provenientes de la industria petroquímic

    Composites of poly(methyl methacrylate) with hybrid fillers (micro/nanohydroxyapatite): mechanical, setting properties, bioactivity and cytotoxicity in vitro

    Full text link
    [EN] Novel composites of poly(methyl methacrylate) with silanized micro and nanohydroxyapatite (HA) particles were prepared. Coralina((R)) HA was the MicroHA filler and synthetic NanoHA was the reinforcement. The influence of the total inorganic content and the proportion of micro- to NanoHA on the setting properties (i.e., setting time and peak polymerization temperature), compressive strength, and in vitro bioactivity in simulated body fluid (SBF) was analyzed. The novel composites exhibited appropriate handling properties. Compressive strength ranged between 71.30 +/- 0.04 and 80.0 +/- 2.4 MPa. The peak polymerization temperatures varied from 44.5 +/- 0.5 to 50.8 +/- 1.8 degrees C, and thus complying with the ISO 5833 standard. The composites exhibited excellent calcium phosphate deposition in SBF and those with 30 wt% inorganic content showed no cytotoxicity on L929 fibroblastic cells. These results encourage further testing of these novel composites for potential future use in human health applications. POLYM. COMPOS., 34:1927-1937, 2013.Contract grant sponsor: MAEC-AECID.López Hernandez, M.; Morejon Alonso, L.; Monleón Pradas, M.; Ledea Lozano, OE.; Guadarrama Bello, D. (2013). Composites of poly(methyl methacrylate) with hybrid fillers (micro/nanohydroxyapatite): mechanical, setting properties, bioactivity and cytotoxicity in vitro. Polymer Composites. 34(11):1927-1937. doi:10.1002/pc.22600S192719373411Lewis, G. (1997). Properties of acrylic bone cement: State of the art review. Journal of Biomedical Materials Research, 38(2), 155-182. doi:10.1002/(sici)1097-4636(199722)38:23.0.co;2-cBasgorenay, B., Ulubayram, K., Serbetci, K., Onurhan, E., & Hasirci, N. (2006). Preparation, modification, and characterization of acrylic cements. Journal of Applied Polymer Science, 99(6), 3631-3637. doi:10.1002/app.22787Daglilar, S., & Erkan, M. E. (2007). A study on bioceramic reinforced bone cements. Materials Letters, 61(7), 1456-1459. doi:10.1016/j.matlet.2006.07.068Yamamuro, T., Nakamura, T., Iida, H., Kawanabe, K., Matsuda, Y., Ido, K., … Senaha, Y. (1998). Development of bioactive bone cement and its clinical applications. Biomaterials, 19(16), 1479-1482. doi:10.1016/s0142-9612(98)00062-3Dunne, N. J., & Orr, J. F. (2002). Journal of Materials Science: Materials in Medicine, 13(1), 17-22. doi:10.1023/a:1013670132001Dalby, M. J., Di Silvio, L., Harper, E. J., & Bonfield, W. (1999). Journal of Materials Science: Materials in Medicine, 10(12), 793-796. doi:10.1023/a:1008907218330Henrich, D. E., Cram, A. E., Park, J. B., Liu, Y. K., & Reddi, H. (1993). Inorganic bone and demineralized bone matrix impregnated bone cement: A preliminaryin vivo study. Journal of Biomedical Materials Research, 27(2), 277-280. doi:10.1002/jbm.820270218Dai, K. R., Liu, Y. K., Park, J. B., Clark, C. R., Nishiyama, K., & Zheng, Z. K. (1991). Bone-particle-impregnated bone cement: Anin vivo weight-bearing study. Journal of Biomedical Materials Research, 25(2), 141-156. doi:10.1002/jbm.820250202Canul-Chuil, A., Vargas-Coronado, R., Cauich-Rodríguez, J. V., Martínez-Richa, A., Fernandez, E., & Nazhat, S. N. (2002). Comparative study of bone cements prepared with either HA or α-TCP and functionalized methacrylates. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 64B(1), 27-37. doi:10.1002/jbm.b.10486Vázquez, B., Ginebra, M. P., Gil, X., Planell, J. A., & San Román, J. (2005). Acrylic bone cements modified with β-TCP particles encapsulated with poly(ethylene glycol). Biomaterials, 26(20), 4309-4316. doi:10.1016/j.biomaterials.2004.10.042Shinzato, S., Nakamura, T., Goto, K., & Kokubo, T. (2003). In Vivo Aging Test for Bioactive Bone Cements Composed of Glass Bead and PMMA. Key Engineering Materials, 254-256, 173-176. doi:10.4028/www.scientific.net/kem.254-256.173Puska, M., Forsback, A.-P., Yli-Urpo, A., Seppälä, J., & Vallittu, P. K. (2007). Biomineralization of Glass Fibre Reinforced Porous Acrylic Bone Cement. Key Engineering Materials, 330-332, 815-818. doi:10.4028/www.scientific.net/kem.330-332.815Mousa, W. F., Kobayashi, M., Shinzato, S., Kamimura, M., Neo, M., Yoshihara, S., & Nakamura, T. (2000). Biological and mechanical properties of PMMA-based bioactive bone cements. Biomaterials, 21(21), 2137-2146. doi:10.1016/s0142-9612(00)00097-1Vallo, C. I., Montemartini, P. E., Fanovich, M. A., L�pez, J. M. P., & Cuadrado, T. R. (1999). Polymethylmethacrylate-based bone cement modified with hydroxyapatite. Journal of Biomedical Materials Research, 48(2), 150-158. doi:10.1002/(sici)1097-4636(1999)48:23.0.co;2-dMorejón, L., Mendizábal, A. E., García-Menocal, J. A. D., Ginebra, M. P., Aparicio, C., Mur, F. J. G., … Planell, J. A. (2004). Static mechanical properties of hydroxyapatite (HA) powder-filled acrylic bone cements: Effect of type of HA powder. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 72B(2), 345-352. doi:10.1002/jbm.b.30166Lewis, G., Nyman, J. S., & Trieu, H. H. (1997). Effect of mixing method on selected properties of acrylic bone cement. Journal of Biomedical Materials Research, 38(3), 221-228. doi:10.1002/(sici)1097-4636(199723)38:33.0.co;2-rSerbetci, K., Korkusuz, F., & Hasirci, N. (2004). Thermal and mechanical properties of hydroxyapatite impregnated acrylic bone cements. Polymer Testing, 23(2), 145-155. doi:10.1016/s0142-9418(03)00073-4Okada, Y., Kawanabe, K., Fujita, H., Nishio, K., & Nakamura, T. (1999). Repair of segmental bone defects using bioactive bone cement: Comparison with PMMA bone cement. Journal of Biomedical Materials Research, 47(3), 353-359. doi:10.1002/(sici)1097-4636(19991205)47:33.0.co;2-pCastaldini, A., & Cavallini, A. (1985). Setting properties of bone cement with added synthetic hydroxyapatite. Biomaterials, 6(1), 55-60. doi:10.1016/0142-9612(85)90039-0Murugan, R., & Ramakrishna, S. (2004). Bioresorbable composite bone paste using polysaccharide based nano hydroxyapatite. Biomaterials, 25(17), 3829-3835. doi:10.1016/j.biomaterials.2003.10.016Sanosh, K. P., Chu, M.-C., Balakrishnan, A., Kim, T. N., & Cho, S.-J. (2009). Preparation and characterization of nano-hydroxyapatite powder using sol-gel technique. Bulletin of Materials Science, 32(5), 465-470. doi:10.1007/s12034-009-0069-xIslas-Blancas, M. E., Cervantes-Uc, J. M., Vargas-Coronado, R., Cauich-Rodríguez, J. V., Vera-Graziano, R., & Martinez-Richa, A. (2001). Characterization of bone cements prepared with functionalized methacrylates and hydroxyapatite. Journal of Biomaterials Science, Polymer Edition, 12(8), 893-910. doi:10.1163/156856201753113088Lopez-Heredia, M. A., Sa, Y., Salmon, P., de Wijn, J. R., Wolke, J. G. C., & Jansen, J. A. (2012). Bulk properties and bioactivity assessment of porous polymethylmethacrylate cement loaded with calcium phosphates under simulated physiological conditions. Acta Biomaterialia, 8(8), 3120-3127. doi:10.1016/j.actbio.2012.05.007Zebarjad, S. M., Sajjadi, S. A., Sdrabadi, T. E., Sajjadi, S. A., Yaghmaei, A., & Naderi, B. (2011). A Study on Mechanical Properties of PMMA/Hydroxyapatite Nanocomposite. Engineering, 03(08), 795-801. doi:10.4236/eng.2011.38096Abboud, M., Turner, M., Duguet, E., & Fontanille, M. (1997). PMMA-based composite materials with reactive ceramic fillers. Part 1.—Chemical modification and characterisation of ceramic particles. Journal of Materials Chemistry, 7(8), 1527. doi:10.1039/a700573cRoether, J. A., & Deb, S. (2004). The effect of surface treatment of hydroxyapatite on the properties of a bioactive bone cement. Journal of Materials Science: Materials in Medicine, 15(4), 413-418. doi:10.1023/b:jmsm.0000021112.51065.40Morejón, L., Delgado, J. A., Davidenko, N., Mendizábal, E., Barbosa, E. H., & Jasso, C. F. (2003). Kinetic effect of hydroxyapatite types on the polymerization of acrylic bone cements. International Journal of Polymeric Materials, 52(7), 637-654. doi:10.1080/00914030304903Viano, A. M., Auwarter, J. A., Rho, J. Y., & Hoffmeister, B. K. (2001). Ultrasonic characterization of the curing process of hydroxyapatite-modified bone cement. Journal of Biomedical Materials Research, 56(4), 593-599. doi:10.1002/1097-4636(20010915)56:43.0.co;2-tDeb, S. (1995). Water absorption characteristics of modified hydroxyapatite bone cements. Biomaterials, 16(14), 1095-1100. doi:10.1016/0142-9612(95)98906-uPaz, A., Guadarrama, D., López, M., E. González, J., Brizuela, N., & Aragón, J. (2012). A comparative study of hydroxyapatite nanoparticles synthesized by different routes. Química Nova, 35(9), 1724-1727. doi:10.1590/s0100-40422012000900004Müller, L., & Müller, F. A. (2006). Preparation of SBF with different HCO3- content and its influence on the composition of biomimetic apatites. Acta Biomaterialia, 2(2), 181-189. doi:10.1016/j.actbio.2005.11.001Dalby, M. J., Di Silvio, L., Harper, E. J., & Bonfield, W. (2002). Increasing hydroxyapatite incorporation into poly(methylmethacrylate) cement increases osteoblast adhesion and response. Biomaterials, 23(2), 569-576. doi:10.1016/s0142-9612(01)00139-9Qiu, H., Yang, J., Kodali, P., Koh, J., & Ameer, G. A. (2006). A citric acid-based hydroxyapatite composite for orthopedic implants. Biomaterials, 27(34), 5845-5854. doi:10.1016/j.biomaterials.2006.07.042Espigares, I., Elvira, C., Mano, J. F., Vázquez, B., San Román, J., & Reis, R. L. (2002). New partially degradable and bioactive acrylic bone cements based on starch blends and ceramic fillers. Biomaterials, 23(8), 1883-1895. doi:10.1016/s0142-9612(01)00315-5Arcos, D. (2001). Bioactivity in glass/PMMA composites used as drug delivery system. Biomaterials, 22(7), 701-708. doi:10.1016/s0142-9612(00)00233-7Ewence, A. E., Bootman, M., Roderick, H. L., Skepper, J. N., McCarthy, G., Epple, M., … Proudfoot, D. (2008). Calcium Phosphate Crystals Induce Cell Death in Human Vascular Smooth Muscle Cells. Circulation Research, 103(5). doi:10.1161/circresaha.108.181305Motskin, M., Wright, D. M., Muller, K., Kyle, N., Gard, T. G., Porter, A. E., & Skepper, J. N. (2009). Hydroxyapatite nano and microparticles: Correlation of particle properties with cytotoxicity and biostability. Biomaterials, 30(19), 3307-3317. doi:10.1016/j.biomaterials.2009.02.044Oliveira, J. M., Silva, S. S., Malafaya, P. B., Rodrigues, M. T., Kotobuki, N., Hirose, M., … Reis, R. L. (2009). Macroporous hydroxyapatite scaffolds for bone tissue engineering applications: Physicochemical characterization and assessment of rat bone marrow stromal cell viability. Journal of Biomedical Materials Research Part A, 91A(1), 175-186. doi:10.1002/jbm.a.3221

    Alternative acrylic bone cement formulations for cemented arthroplasties: Present status, key issues, and future prospects

    No full text
    corecore