511 research outputs found

    Identification of critical amino acids involved in α1-β interaction in voltage-dependent Ca2+ channels

    Get PDF
    AbstractIn voltage-dependent Ca2+ channels, the α1 and β subunits interact via two cytoplasmic regions defined as the Alpha Interaction Domain (AID) and Beta Interaction Domain (BID). Several novel amino acids for that interaction have now been mapped in both domains by point mutations. It was found that three of the nine amino acids in AID and four of the eight BID amino acids tested were essential for the interaction. Whereas the important AID amino acids were clustered around five residues, the important BID residues were more widely distributed within a larger 16 amino acid sequence. The affinity of the AIDA GST fusion protein for the four interacting β1b BID mutants was not significantly altered compared with the wild-type β1b despite the close localization of mutated residues to disruptive BID amino acids. Expression of these interactive β mutants with the full-length α1A subunit only slightly modified the stimulation efficiency when compared with the wild-type β1b subunit. Our data suggest that non-disruptive BID sequence alterations do not dramatically affect the β subunit-induced current stimulation

    Radial Glial Dependent and Independent Dynamics of Interneuronal Migration in the Developing Cerebral Cortex

    Get PDF
    Interneurons originating from the ganglionic eminence migrate tangentially into the developing cerebral wall as they navigate to their distinct positions in the cerebral cortex. Compromised connectivity and differentiation of interneurons are thought to be an underlying cause in the emergence of neurodevelopmental disorders such as schizophrenia. Previously, it was suggested that tangential migration of interneurons occurs in a radial glia independent manner. Here, using simultaneous imaging of genetically defined populations of interneurons and radial glia, we demonstrate that dynamic interactions with radial glia can potentially influence the trajectory of interneuronal migration and thus the positioning of interneurons in cerebral cortex. Furthermore, there is extensive local interneuronal migration in tangential direction opposite to that of pallial orientation (i.e., in a medial to lateral direction from cortex to ganglionic eminence) all across the cerebral wall. This counter migration of interneurons may be essential to locally position interneurons once they invade the developing cerebral wall from the ganglionic eminence. Together, these observations suggest that interactions with radial glial scaffold and localized migration within the expanding cerebral wall may play essential roles in the guidance and placement of interneurons in the developing cerebral cortex

    Contemporary morphogenesis

    Get PDF

    Short-range repulsion and isospin dependence in the KN system

    Get PDF
    The short-range properties of the KN interaction are studied within the meson-exchange model of the Juelich group. Specifically, dynamical explanations for the phenomenological short-range repulsion, required in this model for achieving agreement with the empirical KN data, are explored. Evidence is found that contributions from the exchange of a heavy scalar-isovector meson (a_0(980)) as well as from genuine quark-gluon exchange processes are needed. Taking both mechanisms into account a satisfactory description of the KN phase shifts can be obtained without resorting to phenomenological pieces.Comment: 26 pages, 5 figure

    On the role of the magnetic dipolar interaction in cold and ultracold collisions: Numerical and analytical results for NH(3Σ^3\Sigma^-) + NH(3Σ^3\Sigma^-)

    Full text link
    We present a detailed analysis of the role of the magnetic dipole-dipole interaction in cold and ultracold collisions. We focus on collisions between magnetically trapped NH molecules, but the theory is general for any two paramagnetic species for which the electronic spin and its space-fixed projection are (approximately) good quantum numbers. It is shown that dipolar spin relaxation is directly associated with magnetic-dipole induced avoided crossings that occur between different adiabatic potential curves. For a given collision energy and magnetic field strength, the cross-section contributions from different scattering channels depend strongly on whether or not the corresponding avoided crossings are energetically accessible. We find that the crossings become lower in energy as the magnetic field decreases, so that higher partial-wave scattering becomes increasingly important \textit{below} a certain magnetic field strength. In addition, we derive analytical cross-section expressions for dipolar spin relaxation based on the Born approximation and distorted-wave Born approximation. The validity regions of these analytical expressions are determined by comparison with the NH + NH cross sections obtained from full coupled-channel calculations. We find that the Born approximation is accurate over a wide range of energies and field strengths, but breaks down at high energies and high magnetic fields. The analytical distorted-wave Born approximation gives more accurate results in the case of s-wave scattering, but shows some significant discrepancies for the higher partial-wave channels. We thus conclude that the Born approximation gives generally more meaningful results than the distorted-wave Born approximation at the collision energies and fields considered in this work.Comment: Accepted by Eur. Phys. J. D for publication in Special Issue on Cold Quantum Matter - Achievements and Prospects (2011

    Singularities In Scalar-Tensor Cosmologies

    Get PDF
    In this article, we examine the possibility that there exist special scalar-tensor theories of gravity with completely nonsingular FRW solutions. Our investigation in fact shows that while most probes living in such a Universe never see the singularity, gravity waves always do. This is because they couple to both the metric and the scalar field, in a way which effectively forces them to move along null geodesics of the Einstein conformal frame. Since the metric of the Einstein conformal frame is always singular for configurations where matter satisfies the energy conditions, the gravity wave world lines are past inextendable beyond the Einstein frame singularity, and hence the geometry is still incomplete, and thus singular. We conclude that the singularity cannot be entirely removed, but only be made invisible to most, but not all, probes in the theory.Comment: 23 pages, latex, no figure

    Factors Associated with Nodal Pathologic Complete Response Among Breast Cancer Patients Treated with Neoadjuvant Chemotherapy: Results of CALGB 40601 (HER2+) and 40603 (Triple-Negative) (Alliance)

    Get PDF
    Background: De-escalation of axillary surgery after neoadjuvant chemotherapy (NAC) requires careful patient selection. We seek to determine predictors of nodal pathologic complete response (ypN0) among patients treated on CALGB 40601 or 40603, which tested NAC regimens in HER2+ and triple-negative breast cancer (TNBC), respectively. Patients and Methods: A total of 760 patients with stage II–III HER2+ or TNBC were analyzed. Those who had axillary surgery before NAC (N = 122), or who had missing pretreatment clinical nodal status (cN) (N = 58) or ypN status (N = 41) were excluded. The proportion of patients with ypN0 disease was estimated for those with and without breast pathologic complete response (pCR) according to pretreatment nodal status. Results: In 539 patients, the overall ypN0 rate was 76.3% (411/539) to 93.2% (245/263) in patients with breast pCR and 60.1% (166/276) with residual breast disease (RD) (P < 0.0001). For patients who were cN0 pretreatment, the ypN0 rate was 88.8% (214/241), 96.3% (104/108) with breast pCR, and 82.7% (110/133) with RD. For patients who were cN1, 66.2% (157/237) converted to ypN0, 91.7% (111/121) with breast pCR and 39.7% (46/116) with RD. For patients who were cN2/3, 65.6% (40/61) converted to ypN0, 88.2% (30/34) with breast pCR and 37.0% (10/27) with RD. On multivariable analysis, only pretreatment clinical nodal status and breast pCR/RD were associated with ypN0 status (both P < 0.0001). Conclusions: Breast pCR and pretreatment nodal status are predictive of ypN0 axillary nodal involvement, with < 5% residual nodal disease among cN0 patients who experience breast pCR. These findings support the incorporation of axillary surgery de-escalation strategies into NAC trials

    Global and local critical current density in superconducting SmFeAsO1x_{1-x}Fx_x measured by two methods

    Full text link
    The critical current densities of polycrystalline bulk SmFeAsO1x_{1-x}Fx_x prepared by the powder-in-tube (PIT) method and by a conventional solid-state reaction were investigated using the remnant magnetic moment method and Campbell's method. Two types of shielding current, corresponding to global and local critical current densities JcJ_{\rm c} were observed using both measurement methods. The global and local JcJ_{\rm c} were on the order of 10710^7 A/m2^2 and 101010^{10} A/m2^2 at 5 K, respectively. The local JcJ_{\rm c} decreased slightly with increasing magnetic field. The global JcJ_{\rm c} was independent of the preparation method, while the local JcJ_{\rm c} was larger for samples prepared by PIT than for those prepared by solid-state reaction.Comment: 20 pages, 5 figures. to be published in Physica

    Kaon-Nucleon Scattering Amplitudes and Z^*-Enhancements from Quark Born Diagrams

    Get PDF
    We derive closed form kaon-nucleon scattering amplitudes using the ``quark Born diagram" formalism, which describes the scattering as a single interaction (here the OGE spin-spin term) followed by quark line rearrangement. The low energy I=0 and I=1 S-wave KN phase shifts are in reasonably good agreement with experiment given conventional quark model parameters. For klab>0.7k_{lab}> 0.7 Gev however the I=1 elastic phase shift is larger than predicted by Gaussian wavefunctions, and we suggest possible reasons for this discrepancy. Equivalent low energy KN potentials for S-wave scattering are also derived. Finally we consider OGE forces in the related channels KΔ\Delta, K^*N and KΔ^*\Delta, and determine which have attractive interactions and might therefore exhibit strong threshold enhancements or ``Z^*-molecule" meson-baryon bound states. We find that the minimum-spin, minimum-isospin channels and two additional KΔ^*\Delta channels are most conducive to the formation of bound states. Related interesting topics for future experimental and theoretical studies of KN interactions are also discussed.Comment: 34 pages, figures available from the authors, revte

    Heavy quarkonium: progress, puzzles, and opportunities

    Get PDF
    A golden age for heavy quarkonium physics dawned a decade ago, initiated by the confluence of exciting advances in quantum chromodynamics (QCD) and an explosion of related experimental activity. The early years of this period were chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in 2004, which presented a comprehensive review of the status of the field at that time and provided specific recommendations for further progress. However, the broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles could only be partially anticipated. Since the release of the YR, the BESII program concluded only to give birth to BESIII; the BB-factories and CLEO-c flourished; quarkonium production and polarization measurements at HERA and the Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the deconfinement regime. All these experiments leave legacies of quality, precision, and unsolved mysteries for quarkonium physics, and therefore beg for continuing investigations. The plethora of newly-found quarkonium-like states unleashed a flood of theoretical investigations into new forms of matter such as quark-gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the spectroscopy, decays, production, and in-medium behavior of c\bar{c}, b\bar{b}, and b\bar{c} bound states have been shown to validate some theoretical approaches to QCD and highlight lack of quantitative success for others. The intriguing details of quarkonium suppression in heavy-ion collisions that have emerged from RHIC have elevated the importance of separating hot- and cold-nuclear-matter effects in quark-gluon plasma studies. This review systematically addresses all these matters and concludes by prioritizing directions for ongoing and future efforts.Comment: 182 pages, 112 figures. Editors: N. Brambilla, S. Eidelman, B. K. Heltsley, R. Vogt. Section Coordinators: G. T. Bodwin, E. Eichten, A. D. Frawley, A. B. Meyer, R. E. Mitchell, V. Papadimitriou, P. Petreczky, A. A. Petrov, P. Robbe, A. Vair
    corecore