26 research outputs found

    Molecular evolution of the insect-specific flaviviruses

    Get PDF
    There has been an explosion in the discovery of ‘insect-specific’ flaviviruses and/or their related sequences in natural mosquito populations. Herein we review all ‘insect-specific’ flavivirus sequences currently available and conduct phylogenetic analyses of both the ‘insect-specific’ flaviviruses and available sequences of the entire genus Flavivirus. We show that there is no statistical support for virus–mosquito co-divergence, suggesting that the ‘insect-specific’ flaviviruses may have undergone multiple introductions with frequent host switching. We discuss potential implications for the evolution of vectoring within the family Flaviviridae. We also provide preliminary evidence for potential recombination events in the history of cell fusing agent virus. Finally, we consider priorities and guidelines for future research on ‘insect-specific’ flaviviruses, including the vast potential that exists for the study of biodiversity within a range of potential hosts and vectors, and its effect on the emergence and maintenance of the flaviviruses

    Evolution of the Sequence Composition of Flaviviruses

    Get PDF
    The adaption of pathogens to their host(s) is a major factor in the emergence of infectious disease and the persistent survival of many of the infectious diseases within the population. Since many of the smaller viral pathogens are entirely dependent upon host machinery, it has been postulated that they are under selection for a composition similar to that of their host. Analyses of sequence composition have been conducted for numerous small viral species including the Flavivirus genus. Examination of the species within this particular genus that infect vertebrate hosts revealed that sequence composition proclivities do not correspond with vector transmission as the evolutionary history of this species suggests. Recent sequencing efforts have generated complete genomes for many viral species including members of the Flavivirus genus. A thorough comparison of the sequence composition was conducted for all of the available Flaviviruses for which the complete genome is publicly available. This effort expands the work of previous studies to include new vector-borne species as well as members of the insect-specific group which previously have not been explored. Metrics, including mono-, di-, and trinucleotide abundances as well as NC values and codon usage preferences, were explored both for the entire polyprotein sequence as well as for each individual coding region. Preferences for compositions correspond to host-range rather than evolutionary history; species which infect vertebrate hosts exhibited particular preferences similar to each other as well as in correspondence with their host’s preferences. Flaviviruses which do not infect vertebrate hosts, however, did not show these proclivities, with the exception of the Kamiti River virus suggesting its recent (either past or present) infectivity of an unknown vertebrate host

    Co-circulation of West Nile virus and distinct insect-specific flaviviruses in Turkey

    Get PDF
    Background: Active vector surveillance provides an efficient tool for monitoring the presence or spread of emerging or re-emerging vector-borne viruses. This study was undertaken to investigate the circulation of flaviviruses. Mosquitoes were collected from 58 locations in 10 provinces across the Aegean, Thrace and Mediterranean Anatolian regions of Turkey in 2014 and 2015. Following morphological identification, mosquitoes were pooled and screened by nested and real-time PCR assays. Detected viruses were further characterised by sequencing. Positive pools were inoculated onto cell lines for virus isolation. Next generation sequencing was employed for genomic characterisation of the isolates. Results: A total of 12,711 mosquito specimens representing 15 species were screened in 594 pools. Eleven pools (2%) were reactive in the virus screening assays. Sequencing revealed West Nile virus (WNV) in one Culex pipiens (s.l.) pool from Thrace. WNV sequence corresponded to lineage one clade 1a but clustered distinctly from the Turkish prototype isolate. In 10 pools, insect-specific flaviviruses were characterised as Culex theileri flavivirus in 5 pools of Culex theileri and one pool of Cx. pipiens (s.l.), Ochlerotatus caspius flavivirus in two pools of Aedes (Ochlerotatus) caspius, Flavivirus AV-2011 in one pool of Culiseta annulata, and an undetermined flavivirus in one pool of Uranotaenia unguiculata from the Aegean and Thrace regions. DNA forms or integration of the detected insect-specific flaviviruses were not observed. A virus strain, tentatively named as “Ochlerotatus caspius flavivirus Turkey”, was isolated from an Ae. caspius pool in C6/36 cells. The viral genome comprised 10,370 nucleotides with a putative polyprotein of 3,385 amino acids that follows the canonical flavivirus polyprotein organisation. Sequence comparisons and phylogenetic analyses revealed the close relationship of this strain with Ochlerotatus caspius flavivirus from Portugal and Hanko virus from Finland. Several conserved structural and amino acid motifs were identified. Conclusions: We identified WNV and several distinct insect-specific flaviviruses during an extensive biosurveillance study of mosquitoes in various regions of Turkey in 2014 and 2015. Ongoing circulation of WNV is revealed, with an unprecedented genetic diversity. A probable replicating form of an insect flavivirus identified only in DNA form was detected

    The Interdomain Region of Dengue NS5 Protein That Binds to the Viral Helicase NS3 Contains Independently Functional Importin beta 1 and Importin alpha /beta -Recognized Nuclear Localization Signals

    Get PDF
    Dengue virus NS5 protein is a multifunctional RNA-dependent RNA polymerase that is essential for virus replication. We have shown previously that the 37- amino acid interdomain spacer sequence (residues 369X2KKX14KKKX11RKX3405) of Dengue2 NS5 contains a functional nuclear localization signal (NLS). In this study, beta -galactosidase fusion proteins carrying point mutations of the positively charged residues or truncations of the interdomain linker region (residues 369-389 or residues 386-405) were analyzed for nuclear import and importin binding activities to show that the N-terminal part of the linker region (residues 369-389, a/bNLS) is critical for nuclear localization and is recognized with high affinity by the conventional NLS-binding importin alpha /beta heterodimeric nuclear import receptor. We also show that the importin beta -binding site (residues 320-368, bNLS) adjacent to the a/bNLS, previously identified by yeast two-hybrid analysis, is functional as an NLS, recognized with high affinity by importin beta , and able to target beta -galactosidase to the nucleus. Intriguingly, the bNLS is highly conserved among Dengue and related flaviviruses, implying a general role for the region and importin beta in the infectious cycle

    The 3' untranslated regions of Kamiti River virus and cell fusing agent virus originated by self-duplication

    No full text
    Previously, it was shown that the 3' untranslated region (3'UTR) of Kamiti River virus (KRV) is nearly twice as long as the 3'UTR of other flaviviruses (1208 nucleotides compared with 730 nucleotides for the longest 3'UTR of any virus in the Tick-borne encephalitis virus species). Additionally, KRV and the closely related Cell fusing agent virus (CFAV) were shown to contain two short, almost perfect repeat sequences of 67 nucleotides. However, the construction of a robust comparative nucleotide alignment has now revealed that the double-length 3'UTR and the direct repeats resulted from the virtually complete duplication of a primordial KRV 3'UTR. We also propose that the CFAV 3'UTR was derived from a KRV-like precursor sequence with a large deletion that nevertheless preserved the two direct repeat sequences. These data provide new insights into the evolution of the flavivirus 3'UTR
    corecore