88 research outputs found

    Individual fitness is decoupled from coarse‐scale probability of occurrence in North American trees

    Get PDF
    Habitat suitability estimated with probability of occurrence in species distribution models (SDMs) is used in conservation to identify geographic areas that are most likely to harbor individuals of interest. In theory, probability of occurrence is coupled with individual fitness so that individuals have higher fitness at the centre of their species environmental niche than at the edges, which we here define as 'fitness‐centre' hypothesis. However, such relationship is uncertain and has been rarely tested across multiple species. Here, we quantified the relationship between coarse‐scale probability of occurrence projected with SDMs and individual fitness in 66 tree species native of North America. We used 1) field data of individuals' growth rate (height and diameter standardized by age) available from the United States Forest Inventory Analysis plots; and 2) common garden data collected from 23 studies reporting individual growth rate, survival, height and diameter of individuals originated from different provenances in United States and Canada. We show 'fitness–centre' relationships are rare, with only 12% and 11% of cases showing a significant positive correlation for field and common garden data, respectively. Furthermore, we found the 'fitness–centre' relationship is not affected by the precision of the SDMs and it does not depend upon dispersal ability and climatic breath of the species. Thus, although the 'fitness–centre' relationship is supported by theory, it does not hold true in nearly any species. Because individual fitness plays a relevant role in buffering local extinction and range contraction following climatic changes and biotic invasions, our results encourage conservationists not to assume the 'fitness–centre' relationship when modelling species distribution

    Global patterns of intraspecific leaf trait responses to elevation

    Get PDF
    Elevational gradients are often used to quantify how traits of plant species respond to abiotic and biotic environmental variations. Yet, such analyses are frequently restricted spatially and applied along single slopes or mountain ranges. Since we know little on the response of intraspecific leaf traits to elevation across the globe, we here perform a global meta-analysis of leaf traits in 109 plant species located in 4 continents and reported in 71 studies published between 1983 and 2018. We quantified the intraspecific change in seven morpho-ecophysiological leaf traits along global elevational gradients: specific leaf area (SLA), leaf mass per area (LMA), leaf area (LA), nitrogen concentration per unit of area (Narea), nitrogen concentration per unit mass (Nmass), phosphorous concentration per unit mass (Pmass) and carbon isotope composition (delta C-13). We found LMA, Narea, Nmass and delta C-13 to significantly increase and SLA to decrease with increasing elevation. Conversely, LA and Pmass showed no significant pattern with elevation worldwide. We found significantly larger increase in Narea, Nmass, Pmass and delta C-13 with elevation in warmer regions. Larger responses to increasing elevation were apparent for SLA of herbaceous compared to woody species, but not for the other traits. Finally, we also detected evidences of covariation across morphological and physiological traits within the same elevational gradient. In sum, we demonstrate that there are common cross-species patterns of intraspecific leaf trait variation across elevational gradients worldwide. Irrespective of whether such variation is genetically determined via local adaptation or attributed to phenotypic plasticity, the leaf trait patterns quantified here suggest that plant species are adapted to live on a range of temperature conditions. Since the distribution of mountain biota is predominantly shifting upslope in response to changes in environmental conditions, our results are important to further our understanding of how plants species of mountain ecosystems adapt to global environmental change

    Intraspecific phenotypic variability of plant functional traits in contrasting mountain grasslands habitats

    Get PDF
    Empirical studies that link plants intraspecific variation to environmental conditions are almost lacking, despite their relevance in understanding mechanisms of plant adaptation, in predicting the outcome of environmental change and in conservation. Here, we investigate intraspecific trait variation of four grassland species along with abiotic environmental variation at high spatial resolution (n = 30 samples per species trait and environmental factor per site) in two contrasting grassland habitats in Central Apennines (Italy). We test for phenotypic adaptation between habitats, intraspecific trait-environment relationships within habitats, and the extent of trait and environmental variation. We considered whole plant, clonal, leaf, and seed traits. Differences between habitats were tested using ANOVA and ANCOVA. Trait-environment relationships were assessed using multiple regression models and hierarchical variance partitioning. The extent of variation was calculated using the coefficient of variation. Significant intraspecific differences in trait attributes between the contrasting habitats indicate phenotypic adaptation to in situ environmental conditions. Within habitats, light, soil temperature, and the availability of nitrate, ammonium, magnesium and potassium were the most important factors driving intraspecific trait-environment relationships. Leaf traits and height growth show lower variability than environment being probably more regulated by plants than clonal traits which show much higher variability. We show the adaptive significance of key plant traits leading to intraspecific adaptation of strategies providing insights for conservation of extant grassland communities. We argue that protecting habitats with considerable medium- and small-scale environmental heterogeneity is important to maintain large intraspecific variability within local populations that finally can buffer against uncertainty of future climate and land use scenarios

    Climate change response of vegetation across climatic zones in Italy

    Get PDF
    Italy represents a good model region for assessing vegetation responses to changing climate across a broad climatic range, from Mediterranean warm-dry climate to alpine cold-humid climate. We reviewed results of studies analysing the response of natural vegetation to climate change in Italy, published until July 2016 in peer-reviewed journals. Evidence provided by these studies shows that climate warming is expected overall to enhance plant growth in Italy, but the magnitude of growth stimulation will probably vary among climatic zones, with stronger effects in the cold regions of the alpine climatic zone. Drought, induced by reduced precipitation and/or increased evapotranspiration, can override the positive effects of higher temperatures on plant growth, not only in the Mediterranean warm-dry climatic zone but also in the less dry sub-Mediterranean climatic zone and even in the temperate one. Our review highlighted 2 major research gaps to which future research should be directed. First, there is poor knowledge of how species composition will change in response to changing climate and how this will affect ecosystem functioning in Mediterranean to temperate ecosystems. Second, there is poor knowledge of possible interactions between climate-induced vegetation changes and dynamic processes related to land-use changes

    Intraspecific Functional Trait Response to Advanced Snowmelt Suggests Increase of Growth Potential but Decrease of Seed Production in Snowbed Plant Species

    Get PDF
    In ecological theory, it is currently unclear if intraspecific trait responses to environmental variation are shared across plant species. We use one of the strongest environmental variations in alpine ecosystems, i.e., advanced snowmelt due to climate warming, to answer this question for alpine snowbed plants. Snowbeds are extreme habitats where long-lasting snow cover represents the key environmental factor affecting plant life. Intraspecific variation in plant functional traits is a key to understanding the performance and vulnerability of species in a rapidly changing environment. We sampled snowbed species after an above-average warm winter to assess their phenotypic adjustment to advanced snowmelt, based on differences in the natural snowmelt dynamics with magnitudes reflecting predicted future warming. We measured nine functional traits related to plant growth and reproduction in seven vascular species, comparing snowbeds of early and late snowmelt across four snowbed sites in the southern Alps in Italy. The early snowbeds provide a proxy for the advanced snowmelt caused by climatic warming. Seed production was reduced under advanced snowmelt in all seed-forming snowbed species. Higher specific leaf area (SLA) and lower leaf dry matter content (LDMC) were indicative of improved growth potential in most seed-forming species under advanced snowmelt. We conclude, first, that in the short term, advanced snowmelt can improve snowbed species’ growth potential. However, in the long term, results from other studies hint at increasing competition in case of ongoing improvement of conditions for plant growth under continued future climate warming, representing a risk for snowbed species. Second, a lower seed production can negatively affect the seed rain. A reduction of propagule pressure can be crucial in a context of loss of the present snowbed sites and the formation of new ones at higher altitudes along with climate warming. Finally, our findings encourage using plant functional traits at the intraspecific level across species as a tool to understand the future ecological challenges of plants in changing environments

    Resurveying inner-alpine dry grasslands after 70 years calls for integrative conservation efforts

    Get PDF
    European inner-alpine dry grasslands face substantial threats within the increasingly human-altered landscape, endangering their persistence. To understand changes in dry grassland communities, we revisited historical vegetation plots of Josias Braun-Blanquet after 70 years in Val Venosta, Italy, hosting rare steppe-like grassland vegetation. By disentangling the key environmental factors encompassing climate, land use and human management, and ecological site preferences, we aimed at explaining changes in dry grassland communities with implications for future conservation. By extending our analysis beyond conventional dissimilarity metrics and adopting a landscape-ecological perspective accounting for species-environment interactions, we assessed how environmental changes affect dissimilarity patterns among historical sites, recent non-protected sites, and recent protected sites with generalized additive modelling. Moreover, we examined ecologically significant species changes to evaluate their contribution to community variation within and between sites, discerning their consequences at the landscape scale. Our results revealed significant changes in dry grassland sites, both on non-protected and protected sites. The encroachment of shrubs was associated with a significant increase in generalist species, including various woody species on sites where grazing had ceased. Furthermore, we observed a higher abundance of nutrient-demanding species on sites next to intensive agriculture. These trends were consistent regardless of the protection status, implying that current conservation measures may be insufficient to guarantee their future persistence. To ensure the long-term conservation of typical inner-alpine dry grasslands, interdisciplinary conservation efforts are essential to address adverse environmental impacts across the entire landscape

    Multiple drivers of functional diversity in temperate forest understories: Climate, soil, and forest structure effects

    Get PDF
    In macroecology, shifting from coarse- to local-scale explanatory factors is crucial for understanding how global change impacts functional diversity (FD). Plants possess diverse traits allowing them to differentially respond across a spectrum of environmental conditions. We aim to assess how macro- to microclimate, stand-scale measured soil properties, forest structure, and management type, influence forest understorey FD at the macroecological scale. Our study covers Italian forests, using thirteen predictors categorized into climate, soil, forest structure, and management. We analyzed five traits (i.e., specific leaf area, plant size, seed mass, belowground bud bank size, and clonal lateral spread) capturing independent functional dimensions to calculate the standardized effect size of functional diversity (SES-FD) for all traits (multi-trait) and for single traits. Multiple regression models were applied to assess the effect of predictors on SES-FD. We revealed that climate, soil, and forest structure significantly drive SES-FD of specific leaf area, plant size, seed mass, and bud bank. Forest management had a limited effect only. However, differences emerged between herbaceous and woody growth forms of the understorey layer, with herbaceous species mainly responding to climate and soil features, while woody species were mainly affected by forest structure. Future warmer and more seasonal climate could reduce the diversity of resource economics, plant size, and persistence strategies of the forest understorey. Soil eutrophication and acidification may impact the diversity of regeneration strategies; canopy closure affects the diversity of above- and belowground traits, with a larger effect on woody species. Multifunctional approaches are vital to disentangle the effect of global changes on functional diversity since independent functional specialization axes are modulated by different drivers
    corecore