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Abstract:

Elevational gradients are often used to quantify how traits of plant 
species respond to abiotic and biotic environmental variation. Yet, such 
analyses are frequently restricted spatially and applied along single 
slopes or mountain ranges. Since we know little on the response of 
intraspecific leaf traits to elevation across the globe, we here perform a 
global meta-analysis of leaf traits in 104 plant species from 71 studies 
and four continents published between 1983 and 2017. We quantified 
the intraspecific change of seven morpho-ecophysiological leaf traits 
along global elevational gradients: specific leaf area (SLA); leaf mass per 
area (LMA); leaf area (LA); nitrogen concentration per unit of area 
(Narea); nitrogen concentration per unit mass (Nmass); phosphorous 
concentration per unit mass (Pmass) and carbon isotope composition 
(δ13C). We found LMA, Narea, Nmass and δ13C to significantly increase 
and SLA to decrease with increasing elevation. Conversely, LA and 
Pmass showed no significant pattern with elevation worldwide. 
Furthermore, we found significantly larger increase in Narea, Nmass, 
Pmass and δ13C with elevation in warmer regions. Overall, larger 
responses to elevation were discernible for SLA, but not for the other 
traits, of herbaceous compared to woody species. Finally, we also 
detected strong covariation across morphologial and physiological traits 
within the same elevational gradient. In sum, we demonstrate that there 
are common cross-species patterns of intraspecific leaf trait variation 
across elevational gradients worldwide. Irrespective of whether such 
variation is genetically determined via local adaption or attributed to 
phenotypic plasticity, the leaf trait patterns quantified here suggest that 
plant species have different individuals adapted to live on a range of 
temperature conditions. Since the distribution of mountain biota is 
predominantly shifting upslope in response to climate change, our results 
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are important to further our understanding of how plants species adapt 
to elevation in a warming climate.
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20 Abstract

21 Elevational gradients are often used to quantify how traits of plant species respond to abiotic and 

22 biotic environmental variation. Yet, such analyses are frequently restricted spatially and applied along 

23 single slopes or mountain ranges. Since we know little on the response of intraspecific leaf traits to 

24 elevation across the globe, we here perform a global meta-analysis of leaf traits in 104 plant species 

25 from 71 studies and four continents published between 1983 and 2017. We quantified the intraspecific 

26 change of seven morpho-ecophysiological leaf traits along global elevational gradients: specific leaf 

27 area (SLA); leaf mass per area (LMA); leaf area (LA); nitrogen concentration per unit of area (Narea); 

28 nitrogen concentration per unit mass (Nmass); phosphorous concentration per unit mass (Pmass) and 

29 carbon isotope composition (δ13C). We found LMA, Narea, Nmass and δ13C to significantly increase 

30 and SLA to decrease with increasing elevation. Conversely, LA and Pmass showed no significant 

31 pattern with elevation worldwide. Furthermore, we found significantly larger increase in Narea, 

32 Nmass, Pmass and δ13C with elevation in warmer regions. Overall, larger responses to elevation were 

33 discernible for SLA, but not for the other traits, of herbaceous compared to woody species. Finally, 

34 we also detected strong covariation across morphologial and physiological traits within the same 

35 elevational gradient. In sum, we demonstrate that there are common cross-species patterns of 

36 intraspecific leaf trait variation across elevational gradients worldwide. Irrespective of whether such 

37 variation is genetically determined via local adaption or attributed to phenotypic plasticity, the leaf 

38 trait patterns quantified here suggest that plant species have different individuals adapted to live on a 

39 range of temperature conditions. Since the distribution of mountain biota is predominantly shifting 

40 upslope in response to climate change, our results are important to further our understanding of how 

41 plants species adapt to elevation in a warming climate.

42 Keywords: altitude, carbon isotope ratio, meta-analysis, leaf nutrient content, intraspecific 

43 variability, phenotypic variability, plant functional traits, environmental gradient
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44 Introduction

45 Mountain ecosystems are characterized by a rapid change of climatic conditions along elevational 

46 gradients (Jump, Matyas, & Penuelas, 2009; Körner, 2007). Spatial heterogeneity in site conditions 

47 is further increased by small-scale variation in topography, inclination, exposition and substrate. 

48 Steep climate gradients along short horizontal distances and pronounced small scale heterogeneity in 

49 site conditions make mountain environments unparalleled natural laboratories to study how plants 

50 respond to changes in environmental conditions (Graae et al., 2012; Jump et al., 2009; Sides et al., 

51 2014). The environment selects for the optimal phenotype adapted to a given range of resources and 

52 conditions, for instance, temperature, soil moisture, nutrient availability and disturbance in each 

53 population (Keddy, 1992; Violle et al., 2007; Wellstein & Kuss, 2011). Thus, various abiotic and 

54 biotic environmental conditions occurring across elevations tend to select for different ecological 

55 strategies among individuals of the same species. Such strategies are reflected in species-specific 

56 patterns of changes in physiological and morphological traits along elevation (Sides et al., 2014), 

57 which in turn are expected to greatly affect higher levels of organization (Violle et al., 2007). 

58 There is a growing body of evidence showing that intraspecific trait variation (ITV) - due to 

59 phenotypic plasticity or local adaptation - has a significant and non-negligible effect on species 

60 properties and ecosystem function; for instance, to understand phenotypic plasticity, plant community 

61 assembly and ecosystem processes (Burton, Perakis, McKenzie, Lawrence, & Puettmann, 2017; 

62 Helsen et al., 2017; Kichenin, Wardle, Peltzer, Morse, & Freschet, 2013). Specifically, changes in 

63 leaf morpho-physiological traits have been widely adopted as an indicator of plant’s trade-off between 

64 growth rate and resource conservation (Reich, Walters, & Ellsworth, 1992; Wright et al., 2004). In 

65 addition, leaf traits such as specific leaf area (SLA) and nutrient content are linked to various 

66 ecosystem services, such as soil fertility (Ordoñez et al., 2009), litter decomposition (Cornwell et al., 

67 2008) and carbon sequestration (De Deyn, Cornelissen, & Bardgett, 2008).

68 Studies comparing plant species individuals located at different elevations (i.e. along elevational 

69 gradients or transects) on single slopes or mountain ranges provide relevant insights on the patterns 

Page 4 of 33Global Change Biology



For Review Only

4

70 of the adaptation of the leaf in response to biotic and abiotic variation in the environment (Birmann 

71 & Körner, 2009; Seguí, Lázaro, Traveset, Salgado-Luarte, & Gianoli, 2018; Woodward, 1983). 

72 Changes in leaf morpho-physiology observed along elevation is not due to elevation per se, but they 

73 depend on a set of abiotic and biotic environmental factors that typically change with elevation 

74 (Körner, 2007; Read, Moorhead, Swenson, Bailey, & Sanders, 2014). As elevation increases, 

75 temperature and atmospheric pressure tend to decrease, and solar radiation under clear-sky conditions 

76 to increase (Körner, 2007). Especially air temperature has been described as a key factor that strongly 

77 covaries with elevation worldwide and determines vegetation distribution in mountain environments 

78 (Jump et al., 2009; Körner, 2007; Körner & Paulsen, 2004). Among other factors affecting plant 

79 growth, increased elevation usually implies changes in precipitation, solar radiation, wind velocity, 

80 soil fertility and disturbances by land use (Fisher et al., 2013; Lembrechts et al., 2016; Macek, 

81 Macková, & Bello, 2009), but the direction and strength of the relationship between elevation and 

82 these factors may vary strongly across the globe (Körner, 2007). Although there is no clear elevation-

83 climate relationship in mountain environments worldwide, lower elevation conditions tend to favour 

84 resource-acquisitive strategies that help individuals to face higher competition due to higher 

85 temperature and resource availability (Callaway et al., 2002; Read et al., 2014). Conversely, higher 

86 elevations tend to be characterized by lower temperature and lower competition, pushing individuals 

87 to invest more energy in the conservation of resources (Callaway et al., 2002; Callis-Duehl, Vittoz, 

88 Defossez, & Rasmann, 2017; Pfennigwerth, Bailey, & Schweitzer, 2017). In general, individuals of 

89 the same species growing at higher elevation are expected to show lower leaf area and higher SLA 

90 due to increased density of leaf tissues as morphological adaptation to colder conditions (Körner, 

91 2003; Poorter, Niinemets, Poorter, Wright, & Villar, 2009). Given the strong relationship between 

92 different leaf traits (Poorter & Bongers, 2006; Reich et al., 1992), concentrations of essential 

93 macronutrients such as nitrogen and phosphorus in the leaf can also be expected to decrease with 

94 elevation together with increasing leaf carbon isotope composition (δ13C) (Birmann & Körner, 2009; 

95 Hultine & Marshall, 2000). In addition, decreasing temperature with elevation can also be 
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96 accompanied by decreasing herbivory pressure (Rasmann, Pellissier, Defossez, Jactel, & Kunstler, 

97 2014), allowing plants to produce morphologically different leaves at higher elevations [i.e. with 

98 lower phenolic content, richer in N content and deprived of spines (Callis-Duehl et al., 2017)].

99 Several studies addressed the response of intraspecific leaf trait variation along elevational transects 

100 on single slopes or mountain ranges. However, the direction of such changes is expected to vary 

101 considerably among studies observed [see e.g. different SLA responses in Seguí et al. (2018), Macek 

102 et al. (2009), Woodward (1983)], as the sources of such heterogeneity are manifold. First, studies 

103 often report data for only one or few species that largely differ in their ecology and life form. For 

104 example, tree species perceive clearly different micro-climatic conditions compared to shorter herbs 

105 (Frey et al., 2016; Körner, 2007). Furthermore, woody species are expected to show larger 

106 heterogeneity in trait variation due to broader ontogenetic plasticity (Borges, 2009; Siefert et al., 

107 2015). Another source of heterogeneity is the divergent response of precipitation to elevation 

108 worldwide (Körner, 2007) because precipitation considerably determines moisture supply and might 

109 affect the trait-elevation relationship (Martin & Asner, 2009). Moreover, it has been shown that 

110 intraspecific leaf-trait response to aridity can differ between functional groups and between 

111 biogeographic species pools, emphasizing the relevance of the evolutionary differences in species 

112 strategies (Wellstein et al., 2017). However, applying meta-analytical approaches based on multi-

113 level mixed effect models allows us to compare results from different contexts by controlling for 

114 species-specific responses and for the climatic conditions of each gradient (see e.g. Benítez-López et 

115 al., 2017; Midolo et al., 2019). 

116 Here, we tested the overarching hypothesis that intraspecific leaf trait adjustment appears in the same 

117 direction showing a common trait-elevation relationship across different plant species worldwide. 

118 Therefore, we summarize with a meta-analysis the intraspecific leaf-trait variation along 92 

119 elevational gradients worldwide in order to (i) reveal the overall effects of elevation on leaf-trait 

120 variation and (ii) test whether average environmental conditions of each gradient (mean temperature 

121 of the growing season, mean annual radiation, aridity and mean absolute elevation of the lowest site), 
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122 and (iii) the plant functional types considered (herbaceous vs woody) have an effect on the overall 

123 trait-elevation relationship. Finally, given the covariation of traits along elevational gradients (Hultine 

124 & Marshall, 2000; Zhu, Siegwolf, Durka, & Körner, 2010), we (iv) explore whether variation of 

125 single leaf traits along elevation follow consistent patterns with other traits reported in the same study.

126

127 Materials and Methods

128 Trait selection

129 We analyzed intraspecific variation of seven leaf functional traits in our analysis: specific leaf area 

130 (SLA); leaf mass per area (LMA); leaf area (LA); nitrogen content (Nmass); nitrogen content per unit 

131 of area (Narea); phosphorous content (Pmass) and carbon stable isotope composition (δ13C). We 

132 focused our analysis on leaf traits given their influence on plant growth, development and ecological 

133 performance (Poorter & Bongers, 2006; Wright et al., 2004). Our choice was also based on data 

134 availability; since the chosen leaf traits are relatively easy to measure, for instance compared to many 

135 belowground root traits (Pérez-Harguindeguy et al., 2013), they are consequently more frequently 

136 reported in the literature.

137 The SLA is the inverse of LMA and both indicate the ratio between leaf size and leaf dry weight. 

138 Since elevational gradients normally report either the mean SLA or the mean LMA, and very rarely 

139 the values for every leaf sampled in a given site, it was not possible to convert SLA in LMA, or vice 

140 versa. Thus, to maximize the information in the meta-analysis, we included both SLA and LMA and 

141 analyzed the traits in two separate datasets. In rare cases that original publications reported data of 

142 leaf dry weight and leaf area for every sample or both the SLA and LMA means, we included mean 

143 SLA and LMA in both datasets for that study (10.5 % of the studies).

144 Study selection

145 We searched for studies on Web of Science combining keywords related to elevational gradients and 

146 reflecting different dimensions of leaf traits, for example: (“altitude*” OR “elevation”) AND 

147 (“specific leaf area” OR “leaf traits” OR “leaf nutrients”) (see Appendix S1 for complete search 

Page 7 of 33 Global Change Biology



For Review Only

7

148 string). This resulted in a sample of 659 studies published up to March 2018, of which we scanned 

149 the titles and abstracts and then selected 71 studies that fitted to our criteria. Studies eligible for 

150 inclusion reported means of traits of individuals of the same species sampled across at least two 

151 different elevations within a single slope or mountain range. We only included studies explicitly 

152 quantifying trait response along elevational gradients in their experimental design. We excluded 

153 studies that investigated trait variation across a large geographical range such as latitudinal gradient 

154 studies without clear focus on the effect of elevation only.

155 Studies selected in the meta-analysis reported 92 elevational gradients published between 1983 and 

156 2017 across the globe (Figure 1) and focused on intraspecific leaf traits variation of 104 seed plant 

157 species in total (see summary list in Table S2.1; Appendix S2). Each study reported data for one or 

158 more of the leaf traits selected for the meta-analysis.

159 Data collection

160 We extracted the mean, standard error and sample size of each trait reported in each site sampled 

161 along the elevational gradient and the absolute elevation (m a.s.l.) of the sites sampled. We used 

162 WebPlotDigitizer (Rohatgi, 2018) to extract the data if available only in graphs or retrieved data 

163 directly from tables or the main text. In addition, we extracted the name of each species analyzed and 

164 the geographical coordinates of the location where the study was performed. Species names were 

165 checked across the datasets to standardize species synonyms.

166 We calculated elevation (m) [sensu McVicar and Körner (2013)] as the vertical distance between 

167 sites sampled along the gradient and the lowest site sampled as main predictor in the analysis (see the 

168 graphical framework in Figure S3.1; Appendix S3). In addition, we collected six other predictors 

169 from each elevational gradient that we expected to moderate the response of traits to elevation: 1) 

170 absolute elevation of the lowest point sampled (m a.s.l.); 2) mean growing season temperature (°C); 

171 3) aridity index (the ratio between mean annual precipitation and mean annual potential 

172 evapotranspiration); 4) mean annual solar radiation (W m-2); average latitude of site sampled along 

173 the gradient; and 5) plant functional type (herbaceous or woody). 
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174 Climatic data (temperature, aridity and solar radiation) were estimated using the mean coordinates of 

175 all sites of the gradient, or by using the generic coordinates for the study area in case geographical 

176 coordinates of sites sampled within each gradient were not provided. We extracted the mean growing 

177 season temperature as the three warmest months of the year from the WorldClim database (‘BIO10’) 

178 [version 2.0; www.worldclim.org, Fick and Hijmans (2017)]. Similarly, we also calculated the 

179 average solar radiation and the aridity index from the CliMond database (Kriticos et al., 2012) and 

180 from the CGIAR-CSI GeoPortal (Trabucco & Zomer, 2010), respectively. The aridity index was 

181 calculated as the ratio of annual precipitation (estimated by WorldClim database) to potential 

182 evapotranspiration, meaning that higher aridity index values indicate lower aridity. Climatic data 

183 were extracted with the ‘raster’ function of the R package raster (Hijmans, 2017) with 30 seconds 

184 (0.93 x 0.93 = 0.86 km2) resolution at the equator.

185 Data analysis

186 We calculated log-response ratios (lnRR) for each trait along environmental gradients and species 

187 and used those as the effect size in our meta-analysis (Hedges, Gurevitch, & Curtis, 1999). Response 

188 ratios were calculated as follows:

lnRR𝑖 = ln (𝑇𝐴𝑖) ― ln (𝑇𝐵)

189 where TA is the mean value of a trait measured at the higher elevational level i compared to the mean 

190 of the same trait measured on the same species at a lowest elevation present along the gradient (TB) 

191 (see the graphical framework in Figure S3.1; Appendix S3). Since the selected studies normally 

192 reported data for multiple elevational levels i along the gradient, we calculated lnRR for each 

193 elevation compared with the lowest. This made the effect sizes non-independent within each study 

194 (i.e. multiple mean values compared to one mean value) (see Nakagawa, Noble, Senior, & Lagisz, 

195 2017). Thus, we accounted for such correlation by computing the variance-covariance matrix 

196 proposed by Lajeunesse (2011) when modeling the data. For non-negative trait values (i.e. all traits 

197 considered except for δ13C), a positive value of lnRR indicates that the mean of a certain trait for a 
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198 given species increases relatively to the mean sampled at the lowest elevational level. Thus, for δ13C 

199 a negative value of lnRR means that leaf δ13C is increasing with elevation, and vice versa.

200 We calculated the sampling variance for each pairwise comparison following Hedges et al. (1999) by 

201 using the standard deviations of the means and the number of replicates extracted from the papers 

202 and used it to weight each effect size in the meta-analysis. We imputed missing standard deviations 

203 values using the coefficient of variation from all complete cases using the ‘impute_SD’ function of 

204 the R package metagear (Lajeunesse, 2016).

205 We analyzed the data with multilevel linear mixed-effect models using the ‘rma.mv’ function of the 

206 R package metafor (Viechtbauer, 2010). These models weight the precision of each effect size by the 

207 inverse of its sampling variance and allows to control for non-independence in the data due to multiple 

208 effect sizes per study and species (Nakagawa & Santos, 2012). Models were fitted with a crossed 

209 random effect structure including both the identity of each elevational gradients and the species as 

210 non-nested random components (Benítez-López et al., 2017; Midolo et al., 2019). Following 

211 Konstantopoulos (2011), we nested each observation within the grouping-level in the random 

212 structure of the models to account for the possibility that the underlying true effects within each 

213 elevational gradient are not homogeneous.

214 To quantify overall relative changes of traits for increasing elevation, we first fitted single meta-

215 regression models using elevation only as moderator. Secondly, starting from the full model including 

216 each predictor, we performed a multi-model inference analysis quantifying the importance of 

217 predictors to moderate traits variation. For each response variable (i.e. each leaf trait), we ranked a 

218 set of models according to the small-sample-size corrected Akaike information criterion (AICc) using 

219 the ‘glmulti’ function of the R package glmulti (Calcagno, 2013). The relative importance of each 

220 predictor was evaluated with the AICc weight (AICcW), calculated the sum of the weights for the 

221 models in which the predictor appeared (Burnham & Anderson, 2010). For each response variable 

222 we used a confidence set of models by selecting the smallest subset of models that have a cumulative 

223 sum of AICcW ≥ 0.95 (Johnson & Omland, 2004). We calculated the unconditional estimates of the 
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224 predictors over the confidence set of models averaged. The relative importance of each predictor in 

225 the confidence set was calculated as the sum of the Akaike weights over all the models in which the 

226 predictor appeared. Continuous variables were log-transformed (when showing a positive skewness) 

227 and then scaled prior to modelling. We checked for collinearity among continuous predictors prior to 

228 modelling and found no correlation among predictors (Spearman’s ρ < 0.7) in any of the datasets 

229 analyzed. We checked for potential overparameterization for each of the lowest AICc models selected 

230 by plotting the profile of the (restricted) log-likelihood over all the variance and the correlation 

231 components of the models (Viechtbauer, 2010). 

232 To test how traits covaried along elevational gradients, we estimated the relationship between traits 

233 by fitting a model with the lnRR of the first trait as response and the second trait as predictor 

234 (Vanneste et al., 2018). These models were estimated on a subset of data retaining only the studies 

235 reporting both traits. We did not apply multivariate meta-analytic models to estimate the relationship 

236 among our response variables, as the correlation among leaf traits reported by the individual studies 

237 were not available and they are necessary to compute the variance-covariance matrix in meta-analysis 

238 with multiple correlated outcomes (Berkey, Hoaglin, Antczak‐Bouckoms, Mosteller, & Colditz, 

239 1998; Lajeunesse, 2011).

240 We checked for publication bias by using the ‘funnel’ function of the R package metafor 

241 (Viechtbauer, 2010) and used the modification of the Egger's test proposed by Nakagawa and Santos 

242 (2012) to assess funnel plots’ asymmetry of the null-models’ residuals. We found no evidence for 

243 funnel plot asymmetry for all traits analyzed except for Pmass. The funnel plot of Pmass was found 

244 to be asymmetric due to the large heterogeneity of the true effect, which was not reduced significantly 

245 by the inclusion of any predictor in the model. However, the asymmetry of the residuals did not 

246 support evidence of publication bias for Pmass when analyzed in a contour-enhanced funnel plot 

247 (Nakagawa & Santos, 2012) (see Appendix S4). 

248 All the analyses were performed in R version 3.4.4 (R Core Team, 2018).
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249

250 Figure 1: Geographical distribution of the 92 elevational gradients included in the meta-analysis. For each gradient, point size depict the number of 

251 leaf traits available and the colours depict the total elevation (i.e the vertical distance between the highest site sampled along the gradient and the 

252 lowest site sampled). 
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253 Results

254 Despite large variation, we found clear evidence that intraspecific leaf traits of plants follow 

255 convergent patterns of change in response to increasing elevation worldwide. Both sets of models 

256 analysing the effect of elevation alone (Figure 2) and the multi-model analysis (Figure 3), indicated 

257 that SLA and δ13C response ratios (lnRRs) linearly decreased with increasing elevation, while LMA, 

258 Narea and Nmass lnRRs increased with elevation. Elevation showed the highest relative importance 

259 (AICcW) across candidate models (Figure 3) for SLA, LMA, Narea, Nmass and  δ13C. Conversely, 

260 we found no significant evidence of a consistent trend in LA and Pmass. Leaf area (LA) had a 

261 regression slope estimate close to zero, while Pmass overall increased with elevation, but with a large 

262 confidence interval of the slope estimate (Figure 2). 

263 Among relevant predictors moderating overall trait-elevation relationship, the multi-model analysis 

264 indicated that only Nmass was significantly influenced by mean growing season temperature (MGST) 

265 (Figure 3). However, the lowest AICc models of Narea, Nmass, Pmass and δ13C retained MGST as 

266 significant predictor, indicating that overall larger positive trait variation occured along elevational 

267 gradients with relatively warmer growing seasons (Figure 4). The meta-regression analysis also 

268 indicated that both herbaceous and woody species tended to have leaf traits changing with the same 

269 direction along elevation. However, we found response ratios of SLA to decrease more strongly in 

270 herbaceous species than woody species (Figure 3), although the same pattern was not observed in the 

271 dataset of LMA. We found no significant evidence for the absolute elevation at the lowest site, mean 

272 annual solar radiation, latitude and aridity index to significantly affect the trait variation of any of the 

273 leaf functional traits analysed.

274 The comparisons of response ratios of different traits reported in the same study and species revealed 

275 that leaf traits tend to co-vary along elevational gradients (Figure 5). We found δ13C to increase with 

276 decreasing SLA and LA, and with increasing LMA and Narea; while Nmass and Pmass variations 

277 were not correlated with δ13C variation. In addition, we found that changes in Pmass do not change 
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278 consistently with any other traits except Nmass indicating that two traits positively covary along 

279 elevation.
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280

281 Figure 2: Intraspecific leaf traits variation (lnRRs) in response to elevation (i.e. the vertical distance between two sites sampled along a gradient; log-

282 transformed) across gradients included in the meta-analysis. Solid lines represent the slope estimate of the model (and 95% confidence intervals) with 

283 elevation as predictor only. Significance levels (**P < 0.01; ***P < 0.001) are provided for the slope estimates. A positive value of lnRR indicates 

284 that the mean of a certain trait for a given species increases relatively to the mean sampled at the lowest elevational level, except for carbon isotope 

285 composition (δ13C) (see ‘Materials & Methods’). The dashed lines indicate no change compared to the site sampled at the lowest elevation. Point size 

286 depicts the observation weight (weighted by 1/SE). 
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287
288 Figure 3: Unconditional estimates and 95% confidence intervals (CI) for fixed effects included in the 

289 confidence set of models explaining response ratios (lnRR) of intraspecific leaf trait variation 

290 observed across elevational gradients. Continuous predictors are scaled to standardize the magnitudes 

291 of the estimates. The relative importance (AICcW) is the sum of AICc weights of models in which a 

292 given predictor is retained. ELE = elevation range; AELE = absolute elevation of the lowest site 

293 sampled in a gradient; MGST = mean growing season temperature; PT = plant functional types mean 

294 pooled effect size (woody or herbaceous); LAT = latitude; AI = aridity index; SRAD = mean annual 

295 solar radiation.
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297 Figure 4: Intraspecific leaf trait variation along elevational gradients (lnRRs) of Narea, Nmass, 

298 Pmass and δ13C in response to the average mean growing season temperature (MGST) (°C, three 

299 warmest months) of each elevational gradient. Solid lines represent the slope estimate (and 95% 

300 confidence intervals) obtained from the lowest AICc model in which MGST was retained as 

301 moderator. Significance level (*P < 0.05; **P < 0.01; ***P < 0.001) is provided for the slope 

302 estimate. A positive value of lnRR indicates that the mean of a certain trait for a given species 

303 increases relatively to the mean sampled at the lowest elevational level, except for carbon isotope 

304 composition (δ13C) (see ‘Materials & Methods’). The dashed lines indicate no change compared to 

305 the site sampled at the lowest elevation. Point size depicts the observation weight (weighted by 1/SE). 
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306

307

308 Figure 5: Heatmap of the slope estimates of models obtained from the regression between response 

309 ratios (lnRR) of the leaf traits included in the meta-analysis. Models are obtained from a subset of 

310 studies reporting data for both traits used in the regression. Values are slope estimates obtained by 

311 fitting a model with the lnRR of the first trait as response (y-axis) and the second trait as predictor (x-

312 axis). Significance levels of slope estimates are given (*P < .05; **P < .01; ***P < .001) for each 

313 combination. A negative estimate of leaf carbon isotope composition response ratio (δ13C) indicate 

314 that δ13C is increasing positively correlated with a given trait (see ‘Materials & Methods’).

315
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316 Discussion

317 Leaf traits response to elevation

318 Our results corroborate that intraspecific leaf traits follow general patterns of change in response to 

319 elevation and that such patterns occur across different plant species and mountain ranges worldwide. 

320 This is consistent with previous meta-analyses which found plant traits convergence across multiple 

321 elevational (Read et al., 2014) and latitudinal (De Frenne et al., 2013) gradient studies. Despite large 

322 variation, we found that elevation significantly affected all leaf traits analyzed (SLA/LMA, Narea, 

323 Nmass and δ13C) except LA and Pmass. Overall, we showed that with increasing elevation, plants of 

324 the same species thus produce leaves adapted to abiotic stress (low temperature). At the same time, 

325 leaves exhibit lowered competitive abilities (e.g. lower SLA) and decreasing susceptibility to 

326 herbivore pressure (i.e. higher Narea and Nmass) with increasing elevation (Callis-Duehl et al., 

327 2017). It remains uncertain whether trait variation across elevations is genetically fixed via local 

328 adaption or can be attributed to phenotypic plasticity (Bresson, Vitasse, Kremer, & Delzon, 2011; 

329 Morecroft & Woodward, 1996; Pfennigwerth et al., 2017). With a review of common garden 

330 experiments, Read et al. (2014) found that genetic differentiation often explains a significant amount 

331 of intraspecific variation of LMA, Nmass and Narea among populations at different elevations and 

332 latitudes.

333 The detected changes in SLA and LMA along elevational gradients indicate that the leaves tend to be 

334 thicker and the tissues denser in response to decreasing temperature and increasing irradiance (Poorter 

335 et al., 2009). Although plants species growing at high elevations worldwide tend to produce small 

336 leaves (Wright et al., 2017), our results indicated that interspecific LA variation is not affected by 

337 increasing elevation. Our findings suggest that individuals may need to maintain large LA to capture 

338 light while compensating the lower photosynthetic efficiency driven by the increased leaf tissue 

339 density as expressed in SLA and LMA (Poorter et al., 2009). 

340 The Narea, Nmass and Pmass are traits representing the amount of proteins and nucleic acids stored 

341 in the leaf that can be invested for photosynthesis and growth. We found evidence that leaf nutrient 
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342 content generally tends to increase with elevation. In addition, we showed that there is a strong 

343 positive covariation between Pmass and Nmass across elevational gradient studies reporting data on 

344 both traits (Figure 5). A positive response of Narea was expected based on the results of a previous 

345 meta-analysis on elevational gradients (Read et al., 2014), on the positive correlation between Narea 

346 and LMA (Wright et al., 2004), and because leaf size was expected to decrease with elevation, 

347 resulting in N dilution per unit of leaf area (Weih & Karlsson, 2001). Similarly, we were expecting 

348 Nmass to decrease because of the LMA increase and given their negative correlation in the leaf 

349 economic spectrum (Wright et al., 2004). In addition, a previous meta-analysis of Read et al. (2014) 

350 showed no specific pattern of Nmass with elevation across the globe, possibly because of the strong 

351 interdependence of Nmass with soil fertility, which does not covary with elevation (Körner, 2007). 

352 For the same reasons, we were not expecting Pmass to increase across elevations either. Thus, the 

353 positive trends we found for Nmass and Pmass were in contrast with the hypothesis that leaf traits 

354 shows resource-conservative strategies with increasing elevation (Pfennigwerth et al., 2017; Read et 

355 al., 2014). However, the changes in leaf nutrient content we observed are consistent with Körner 

356 (1989) and with the increase in leaf N and P concentration toward the poles as average temperature 

357 decreases (Reich & Oleksyn, 2004). The increasing leaf nutrient content at lower temperatures might 

358 reflect the acclimation of optimal N use-efficiency and decreased N dilution due to the reduced 

359 aboveground biomass growth rate (Weih & Karlsson, 1999; Weih & Karlsson, 2001). Furthermore, 

360 Narea, Nmass and Pmass positive variation along elevation might be interpreted as a physiological 

361 compensation to the decreasing photosynthetic efficiency caused by decreasing SLA, as higher tissue 

362 density enhances the leaf internal resistance to water and CO2 (see Figure 4) (Morecroft, Woodward, 

363 & Marris, 1992). 

364 Increasing δ13C indicated a decreasing ratio of CO2 partial pressure inside the leaf to that in the 

365 atmosphere. Such trend is consistent with the conclusion that plants at higher elevation show higher 

366 leaf δ13C worldwide (Körner, Farquhar, & Roksandic, 1988; Wang et al., 2013). Environmental 

367 factors influencing the positive trend of δ13C along elevational gradients are not fully clear in the 
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368 literature (Körner, Farquhar, & Wong, 1991; Morecroft et al., 1992), but evidence suggest that such 

369 trend is linked to both decreasing temperature and atmospheric pressure (Cernusak et al., 2013). 

370 Lower oxygen partial pressure increases the carboxylation efficiency of the Rubisco enzyme 

371 (Farquhar & Wong, 1984) and the decreasing temperature slows down the transport of water in the 

372 plant, resulting in reduced leaf CO2 diffusion rates (Cernusak et al., 2013). Additionally, the leaf δ13C 

373 response may not depend on environmental factors directly but on the morpho-physiological 

374 adjustment of the leaf to elevation (Gerdol, Iacumin, & Tonin, 2018; Hultine & Marshall, 2000; 

375 Vitousek, Field, & Matson, 1990; Zhu et al., 2010). Indeed, or results indicate that δ13C increase when 

376 leaf area is reduced (Figure 5), possibly because the plant adapts the level of water use efficiency to 

377 transpiration rate and light interception, which both depend on the leaf area (Wright et al., 2017). 

378 Finally, similarly to what we suggested for Nmass and Pmass, the covariation we found for δ13C with 

379 SLA and LMA (Figure 5) in both datasets might reflect leaf physiological compensation to decreasing 

380 carboxylation efficiency induced by increasing leaf tissue density (Vitousek et al., 1990).

381 Biogeographic factors influencing the response of leaf traits to elevation

382 Our analysis revealed that the directions of trait-elevation relationships do generally not differ across 

383 different climates mountain ranges worldwide. However, our multi-model inference analysis revealed 

384 that the magnitude of the intraspecific leaf trait variation along elevational gradients is affected by 

385 the mean temperature of the growing season. The overall responses of Narea, Nmass, Pmass and δ13C 

386 to increasing elevation tended to be stronger along elevational gradients located in warmer 

387 macroclimates (Figure 4). This finding shows that plants growing on warmer mountain ranges tend 

388 to store larger amounts of N per unit of mass in response to increasing elevation compared to plant 

389 species located in mountain ranges where the growing season is characterized by lower temperatures. 

390 This is probably linked to the overall higher N concentration in the leaf of plants in cold climates 

391 (Körner, 1989), which smoothens the effect of increasing N-content with decreasing temperatures 

392 along elevational gradients compared to generally warmer climatic conditions. From an ecological 

393 point of view, this also suggests that species growing on warmer mountains tends to become 
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394 potentially more competitive and resource-acquisitive with elevation compared to species located in 

395 colder mountain areas. In addition, the current climate warming trends enhance species richness and 

396 abundance along elevational gradients and might thus favor plant species that are adapted to live in 

397 N-rich conditions, because these species are expected to show higher nutrient content and resource 

398 investment in response to increasing competition (Rumpf et al., 2018).

399 Finally, we found that the response to increased elevation does not depend on the elevation of the 

400 lowest site sampled, indicating that leaf traits of plants growing both at higher and lower elevation 

401 respond with the same magnitude of change to increasing elevational range. This suggests that 

402 although plants growing at higher absolute elevation levels show e.g. higher LMA and nutrient 

403 concentration (Körner, 1989; Körner, 2003), their relative change to increasing elevational range is 

404 expected to be proportionally equal to the one of species with lower LMA and nutrient concentration 

405 at lower elevation, possibly because absolute elevation alone does not significantly impact plant 

406 growth on a large geographical extent (Körner, 2007).

407 Plant functional types responses

408 We found significant differences in magnitude of variation in SLA across woody and herbaceous 

409 species. Our results indicated a larger negative response in herbaceous species in intraspecific SLA 

410 with increasing elevation compared to woody species. These findings support the general hypothesis 

411 that fast-growing herbaceous plants characterized by lower costs to plasticity are better able to adapt 

412 to environmental filtering compared to woody species (Maire et al., 2013). Although there is evidence 

413 of leaf trait variation along climatic gradients differs among plant functional types (e.g. C3 / C4 dicots 

414 and monocots; Ivanova, Yudina, Ronzhina, Ivanov, & Hölzel, 2018), differences across functional 

415 groups found in SLA were not reflected in the LMA dataset nor in any of the other traits analyzed 

416 here, possibly because herbaceous and woody functional types overlap substantially in their leaf trait 

417 characteristics (Wright et al., 2004). In addition, the overall low differences between plant functional 

418 groups response to elevation reflected the results of Siefert et al. (2015) who compared the relative 
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419 extent of intraspecific trait variation in plant communities and found no significant difference in the 

420 magnitude of variation between woody and herbaceous species.  

421 From elevation range to temperature changes

422 The relationships between elevational range and leaf traits we explored here showed strong similarity 

423 with the trait syndrome characterizing plants adapting to colder environments along spatial 

424 temperature gradients (Reich & Oleksyn, 2004; Tian, Yu, He, & Hou, 2016). Indeed, temperature is 

425 the main factor affecting plant growth that covaries consistently with elevation range in different 

426 mountains worldwide (Jump et al., 2009; Körner, 2007). Similarly to latitudinal gradients (De Frenne 

427 et al., 2013), elevational gradients offer a promising tool to infer plant responses to temperature 

428 change. Combining information obtained from elevational gradients and latitudinal gradients, is an 

429 exciting challenge to elaborate a space-for-time substitution providing insights into plant traits 

430 response to global warming (Fukami & Wardle, 2005; Read et al., 2014). However, predicting the 

431 potential effects of temperature change based on multiple elevational and latitudinal gradients suffers 

432 from various weaknesses. Besides the heterogeneity caused by different experimental designs, study 

433 aims and biogeographical contexts, which can be accounted by using meta-analytical approaches (see 

434 e.g. Midolo et al., 2019), studies analyzed often do not report data on temperature change along each 

435 gradient (Graae et al., 2012) as well as other relevant factors such as humidity, soil fertility and land-

436 use. As a result, both elevational and latitudinal gradients are still currently underused to study climate 

437 change on a large geographical extent (De Frenne et al., 2013). 

438 However, considering possible further unexplored impacts of climatic variation, it is even more 

439 surprising that our findings suggest the same direction of SLA/LMA response to elevation while they 

440 had opposing directions of SLA response to drought depending on functional groups and 

441 biogeographic history (Wellstein et al., 2017). According to our findings, species across 

442 biogeographical groups evolved strategically the same way of key leaf-trait response to temperature 

443 (across elevations) while already only within Europe they are differentiated in their strategy to deal 

444 with aridity (Wellstein et al., 2017). This means that direction of plant functional responses to 
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445 temperature changes could be predicted more easily while plant functional response to changes in 

446 water availability has to be tested against the evolutionary background of the species. Moreover, in 

447 line with De Frenne et al. (2013), Read et al. (2014) and Wellstein et al. (2017) our findings further 

448 reinforce the importance of intraspecific variation as important driver of functional plant response to 

449 climate changes.

450 Concluding remarks

451 We here combined results of multiple elevational gradients studies focusing on leaf traits variation 

452 with a meta-analysis to reveal patterns of intraspecific morpho-physiological traits adjustment to 

453 high-elevation conditions worldwide. Summarizing evidence from a variety of elevational gradients 

454 helps us to understand the potential implications of climate change on individual species in the 

455 coming years when focusing on temperature changes taking into account other changes across 

456 elevations (Körner, 2007). Irrespective of the mechanisms behind traits variation along elevational 

457 transects, we clearly showed that populations located along elevational gradients exhibit individuals 

458 adapted to different abiotic conditions. Since the distribution of mountain biota is shifting upslope in 

459 response to climate change (Lenoir, Gégout, Marquet, Ruffray, & Brisse, 2008; Rumpf et al., 2018; 

460 Steinbauer et al., 2018), our results are particularly important to understand how plants adapt to such 

461 elevation shift in a warming planet. Within the considered temperature range, our findings indicate 

462 that future upward migrating species most likely will lower their SLA and increase their nitrogen 

463 content and δ13C. However, plant-life beyond the here analyzed realized niche, i.e. the emergence of 

464 new parts of the realized niche based on the fundamental one has rarely been tested so far (Violle and 

465 Jiang, 2009). In this context, experimental research would enable new knowledge on the hidden part 

466 of plant variability.

467 Finally, the magnitude of intraspecific trait variation we observed is expected to scale up to higher 

468 levels of biological organization (Violle et al., 2007). Thus, when analyzing functional trait response 

469 to elevation at the community level, intraspecific variability is expected to significantly contribute to 

470 the variation observed among plant assemblages at different elevation levels.
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