1,421 research outputs found
An investigation and comparison of speech recognition software for determining if bird song recordings contain legible human voices
The purpose of this work was to test the effectiveness of using readily available speech recognition API services to determine if recordings of bird song had inadvertently recorded human voices. A mobile phone was used to record a human speaking at increasing distances from the phone in an outside setting with bird song occurring in the background. One of the services was trained with sample recordings nd each service was compared for their ability to return recognized words. The services from Google and IBM performed similarly and the Microsoft service, that allowed training, performed slightly better. However, all three services failed to perform at a level that would enable recordings with recognizable human speech to be deleted in order to maintain full privacy protection
On the simulation of enzymatic digest patterns: the fragmentation of oligomeric and polymeric galacturonides by endo-polygalacturonase II
A simulation methodology for predicting the time-course of enzymatic
digestions is described. The model is based solely on the enzyme's subsite
architecture and concomitant binding energies. This allows subsite binding
energies to be used to predict the evolution of the relative amounts of
different products during the digestion of arbitrary mixtures of oligomeric or
polymeric substrates. The methodology has been specifically demonstrated by
studying the fragmentation of a population of oligogalacturonides of varying
degrees of polymerization, when digested by endo-polygalacturonase II (endo-PG
II) from Aspergillus niger.Comment: Preprint - has been accepted to Biochimica et Biophysica Act
An Acoustic Charge Transport Imager for High Definition Television Applications: Low-Voltage SAW Amplifiers on Multilayer GaAs/ZnO Substrates
This thesis addresses the acoustoelectric issues concerning the amplification of surface acoustic waves (SAWs) and the reflection of SAWs from slanted reflector gratings on GaAs, with application to a novel acoustic charge transport (ACT) device architecture. First a simple model of the SAWAMP was developed, which was subsequently used to define the epitaxially grown material structure necessary to provide simultaneously high resistance and high electron mobility. In addition, a segmented SAWAMP structure was explored with line widths on the order of an acoustic wavelength. This resulted in the demonstration of SAWAMPS with an order of magnitude less voltage and power requirements than previously reported devices. A two-dimensional model was developed to explain the performance of devices with charge confinement layers less then 0.5 mm, which was experimentally verified. This model was extended to predict a greatly increased gain from the addition of a ZnO overlay. These overlays were experimentally attempted, but no working devices were reported due to process incompatibilities. In addition to the SAWAMP research, the reflection of SAWs from slanted gratings on GaAs was also studied and experimentally determined reflection coefficients for both 45 deg grooves and Al stripes on GaAs have been reported for the first time. The SAWAMp and reflector gratings were combined to investigate the integrated ring oscillator for application to the proposed ACT device and design parameters for this device have been provided
Reducing stomatal density in barley improves drought tolerance without impacting on yield.
The epidermal patterning factor (EPF) family of secreted signalling peptides regulate the frequency of stomatal development in model dicot and basal land plant species. Here we identify and manipulate the expression of a barley ortholog and demonstrate that when overexpressed HvEPF1 limits entry to, and progression through, the stomatal development pathway. Despite substantial reductions in leaf gas exchange, barley plants with approximately half of the normal number of stomata show no reductions in grain yield. In addition, HvEPF1OE barley lines exhibit significantly enhanced water use efficiency, drought tolerance and soil water conservation properties. Our results demonstrate the potential of manipulating stomatal frequency for the protection and optimisation of cereal crop yields under future drier environments
Shining a light on clinical spectroscopy : translation of diagnostic IR, 2D-IR and Raman spectroscopy towards the clinic
In recent years, the application of vibrational spectroscopy in biomedical research has rapidly expanded; covering aspects of pharmaceutical development, to point-of-care technologies. Vibrational spectroscopy techniques such as Fourier-transform IR (FTIR), and Raman spectroscopy have been at the forefront of this movement, with their complementary information able to shine light onto a range of medical applications. As a relative newcomer to biomedical applications, two-dimensional (2D)-IR is also gaining traction in the field. Here we describe the recent development of these techniques as analytical tools in medical science, and their relative advancements towards the clinic
Recommended from our members
The spectral sensitivity of cone vision in the diurnal murid, Rhabdomys pumilio
An animal’s temporal niche – the time of day at which it is active – is known to drive a variety of adaptations in the visual system. This includes variations in the topography, spectral sensitivity and density of retinal photoreceptors, and changes in the eye’s gross anatomy and spectral transmission characteristics. We have characterised visual spectral sensitivity in the murid rodent Rhabdomys pumilio (‘the four-striped grass mouse’), which is the same family as (nocturnal) mice and rats, but exhibits a strong diurnal niche. As is common in diurnal species, the Rhabdomys lens acts as a long-pass spectral filter, providing limited transmission of light <400nm. Conversely, we found strong sequence homologies with the Rhabdomys SWS and MWS opsins and those of related nocturnal species (mice and rats) whose SWS opsins are maximally sensitive in the near UV. We continued to assess in vivo spectral sensitivity of cone vision using electroretinography and multi-channel recordings from the visual thalamus. These revealed that responses across the human visible range could be adequately described by those of a single pigment (assumed to be MWS opsin) maximally sensitive ~500nm, but that sensitivity in the near UV required inclusion of a second pigment whose peak sensitivity lay well into the UV range (λmax <400nm, likely ~360nm). We therefore conclude that, despite the UV-filtering effects of the lens, the Rhabdomys retains an SWS pigment with a UV-A λmax. In effect, this somewhat paradoxical combination of long-pass lens and UV-A λmax results in narrow-band sensitivity for SWS cone pathways in the UV-A range
Analogies Between Digital Radio and Chemical Orthogonality as a Method for Enhanced Analysis of Molecular Recognition Events
Acoustic wave biosensors are a real-time, label-free biosensor technology, which have been exploited for the detection of proteins and cells. One of the conventional biosensor approaches involves the immobilization of a monolayer of antibodies onto the surface of the acoustic wave device for the detection of a specific analyte. The method described within includes at least two immobilizations of two different antibodies onto the surfaces of two separate acoustic wave devices for the detection of several analogous analytes. The chemical specificity of the molecular recognition event is achieved by virtue of the extremely high (nM to pM) binding affinity between the antibody and its antigen. In a standard ELISA (Enzyme-Linked ImmunoSorbent Assay) test, there are multiple steps and the end result is a measure of what is bound so tightly that it does not wash away easily. The fact that this “gold standard” is very much not real time, masks the dance that is the molecular recognition event. X-Ray Crystallographer, Ian Wilson, demonstrated more than a decade ago that antibodies undergo conformational change during a binding event[1, 2]. Further, it is known in the arena of immunochemistry that some antibodies exhibit significant cross-reactivity and this is widely termed antibody promiscuity. A third piece of the puzzle that we will exploit in our system of acoustic wave biosensors is the notion of chemical orthogonality. These three biochemical constructs, the dance, antibody promiscuity and chemical orthogonality will be combined in this paper with the notions of in-phase (I) and quadrature (Q) signals from digital radio to manifest an approach to molecular recognition that allows a level of discrimination and analysis unobtainable without the aggregate. As an example we present experimental data on the detection of TNT, RDX, C4, ammonium nitrate and musk oil from a system of antibody-coated acoustic wave sensors
Entrance Channel X-HF (X=Cl, Br, and I) Complexes studied by High-Resolution Infrared Laser Spectroscopy in Helium Nanodroplets
Rotationally resolved infrared spectra are reported for halogen atom - HF
free radical complexes formed in helium nanodroplets. An effusive pyrolysis
source is used to dope helium droplets with Cl, Br and I atoms, formed by
thermal dissociation of Cl, Br and I. A single hydrogen fluoride
molecule is then added to the droplets, resulting in the formation of the X-HF
complexes of interest. Analysis of the resulting spectra confirms that the
observed species have ground electronic states, consistent with
the linear hydrogen bound structures predicted from theory. Stark spectra are
also reported for these species, from which the permanent electric dipole
moments are determined.Comment: 41 pages, 16 figures, 5 table
Comparison of Mortality Following Hospitalisation for Isolated Head Injury in England and Wales, and Victoria, Australia
BACKGROUND: Traumatic brain injury (TBI) remains a leading cause of death and disability. The National Institute for Health and Clinical Excellence (NICE) guidelines recommend transfer of severe TBI cases to neurosurgical centres, irrespective of the need for neurosurgery. This observational study investigated the risk-adjusted mortality of isolated TBI admissions in England/Wales, and Victoria, Australia, and the impact of neurosurgical centre management on outcomes.
METHODS: Isolated TBI admissions (>15 years, July 2005-June 2006) were extracted from the hospital discharge datasets for both jurisdictions. Severe isolated TBI (AIS severity >3) admissions were provided by the Trauma Audit and Research Network (TARN) and Victorian State Trauma Registry (VSTR) for England/Wales, and Victoria, respectively. Multivariable logistic regression was used to compare risk-adjusted mortality between jurisdictions.
FINDINGS: Mortality was 12% (749/6256) in England/Wales and 9% (91/1048) in Victoria for isolated TBI admissions. Adjusted odds of death in England/Wales were higher compared to Victoria overall (OR 2.0, 95% CI: 1.6, 2.5), and for cases <65 years (OR 2.36, 95% CI: 1.51, 3.69). For severe TBI, mortality was 23% (133/575) for TARN and 20% (68/346) for VSTR, with 72% of TARN and 86% of VSTR cases managed at a neurosurgical centre. The adjusted mortality odds for severe TBI cases in TARN were higher compared to the VSTR (OR 1.45, 95% CI: 0.96, 2.19), but particularly for cases <65 years (OR 2.04, 95% CI: 1.07, 3.90). Neurosurgical centre management modified the effect overall (OR 1.12, 95% CI: 0.73, 1.74) and for cases <65 years (OR 1.53, 95% CI: 0.77, 3.03).
CONCLUSION: The risk-adjusted odds of mortality for all isolated TBI admissions, and severe TBI cases, were higher in England/Wales when compared to Victoria. The lower percentage of cases managed at neurosurgical centres in England and Wales was an explanatory factor, supporting the changes made to the NICE guidelines
- …