874 research outputs found

    Simultaneous topography and reaction flux mapping at and around electrocatalytic nanoparticles

    Get PDF
    The characterization of electrocatalytic reactions at individual nanoparticles (NPs) is presently of considerable interest but very challenging. Herein, we demonstrate how simple-to-fabricate nanopipette probes with diameters of approximately 30 nm can be deployed in a scanning ion conductance microscopy (SICM) platform to simultaneously visualize electrochemical reactivity and topography with high spatial resolution at electrochemical interfaces. By employing a self-referencing hopping mode protocol, whereby the probe is brought from bulk solution to the near-surface at each pixel, and with potential-time control applied at the substrate, current measurements at the nanopipette can be made with high precision and resolution (30 nm resolution, 2600 pixels μm–2, <0.3 s pixel−1) to reveal a wealth of information on the substrate physicochemical properties. This methodology has been applied to image the electrocatalytic oxidation of borohydride at ensembles of AuNPs on a carbon fiber support in alkaline media, whereby the depletion of hydroxide ions and release of water during the reaction results in a detectable change in the ionic composition around the NPs. Through the use of finite element method simulations, these observations are validated and analyzed to reveal important information on heterogeneities in ion flux between the top of a NP and the gap at the NP-support contact, diffusional overlap and competition for reactant between neighboring NPs, and differences in NP activity. These studies highlight key issues that influence the behavior of NP assemblies at the single NP level and provide a platform for the use of SICM as an important tool for electrocatalysis studies

    Effectiveness of a comprehensive mental skills curriculum in enhancing surgical performance: Results of a randomized controlled trial

    Get PDF
    INTRODUCTION: We hypothesized that the implementation of a novel mental skills curriculum (MSC) during laparoscopic simulator training would improve mental skills and performance, and decrease stress. METHODS: Sixty volunteer novices were randomized into intervention and control groups. All participants received FLS training while the intervention group also participated in the MSC. Skill transfer and retention were assessed on a live porcine model after training and 2 months later, respectively. Performance was assessed using the Test of Performance Strategies-2 (TOPS-2) for mental skills, FLS metrics for laparoscopic performance, and the State Trait Anxiety Inventory (STAI-6) and heart rate (HR) for stress. RESULTS: Fifty-five participants (92%) completed training and the transfer test, and 46 (77%) the retention test. There were no significant differences between groups at baseline. Compared to controls the intervention group significantly improved their mental skill use, demonstrated higher laparoscopic skill improvement during retention, and reported less stress during the transfer test. CONCLUSIONS: The MSC implemented in this study effectively enhanced participants' mental skill use, reduced cognitive stress in the operating room with a small impact on laparoscopic performance

    Complete Genome Sequences of Paenibacillus Larvae Phages BN12, Dragolir, Kiel007, Leyra, Likha, Pagassa, PBL1c, and Tadhana

    Get PDF
    We present here the complete genomes of eight phages that infect Paenibacillus larvae, the causative agent of American foulbrood in honeybees. Phage PBL1c was originally isolated in 1984 from a P. larvae lysogen, while the remaining phages were isolated in 2014 from bee debris, honeycomb, and lysogens from three states in the USA

    Identification of rare-disease genes using blood transcriptome sequencing and large control cohorts.

    Get PDF
    It is estimated that 350 million individuals worldwide suffer from rare diseases, which are predominantly caused by mutation in a single gene1. The current molecular diagnostic rate is estimated at 50%, with whole-exome sequencing (WES) among the most successful approaches2-5. For patients in whom WES is uninformative, RNA sequencing (RNA-seq) has shown diagnostic utility in specific tissues and diseases6-8. This includes muscle biopsies from patients with undiagnosed rare muscle disorders6,9, and cultured fibroblasts from patients with mitochondrial disorders7. However, for many individuals, biopsies are not performed for clinical care, and tissues are difficult to access. We sought to assess the utility of RNA-seq from blood as a diagnostic tool for rare diseases of different pathophysiologies. We generated whole-blood RNA-seq from 94 individuals with undiagnosed rare diseases spanning 16 diverse disease categories. We developed a robust approach to compare data from these individuals with large sets of RNA-seq data for controls (n = 1,594 unrelated controls and n = 49 family members) and demonstrated the impacts of expression, splicing, gene and variant filtering strategies on disease gene identification. Across our cohort, we observed that RNA-seq yields a 7.5% diagnostic rate, and an additional 16.7% with improved candidate gene resolution

    The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey : measuring DA and H at z = 0.57 from the baryon acoustic peak in the Data Release 9 spectroscopic Galaxy sample

    Get PDF
    We present measurements of the angular diameter distance to and Hubble parameter at z = 0.57 from the measurement of the baryon acoustic peak in the correlation of galaxies from the Sloan Digital Sky Survey III Baryon Oscillation Spectroscopic Survey. Our analysis is based on a sample from Data Release 9 of 264 283 galaxies over 3275 square degrees in the redshift range 0.43 < z < 0.70. We use two different methods to provide robust measurement of the acoustic peak position across and along the line of sight in order to measure the cosmological distance scale. We find DA(0.57) = 1408 ± 45 Mpc and H(0.57) = 92.9 ± 7.8 km s−1 Mpc−1 for our fiducial value of the sound horizon. These results from the anisotropic fitting are fully consistent with the analysis of the spherically averaged acoustic peak position presented in Anderson et al. Our distance measurements are a close match to the predictions of the standard cosmological model featuring a cosmological constant and zero spatial curvature.Publisher PDFPeer reviewe

    SDSS-III Baryon Oscillation Spectroscopic Survey data release 12 : galaxy target selection and large-scale structure catalogues

    Get PDF
    The Baryon Oscillation Spectroscopic Survey (BOSS), part of the Sloan Digital Sky Survey (SDSS) III project, has provided the largest survey of galaxy redshifts available to date, in terms of both the number of galaxy redshifts measured by a single survey, and the effective cosmological volume covered. Key to analysing the clustering of these data to provide cosmological measurements is understanding the detailed properties of this sample. Potential issues include variations in the target catalogue caused by changes either in the targeting algorithm or properties of the data used, the pattern of spectroscopic observations, the spatial distribution of targets for which redshifts were not obtained, and variations in the target sky density due to observational systematics. We document here the target selection algorithms used to create the galaxy samples that comprise BOSS. We also present the algorithms used to create large-scale structure catalogues for the final Data Release (DR12) samples and the associated random catalogues that quantify the survey mask. The algorithms are an evolution of those used by the BOSS team to construct catalogues from earlier data, and have been designed to accurately quantify the galaxy sample. The code used, designated mksample, is released with this paper.Publisher PDFPeer reviewe

    The Morphology of Galaxies in the Baryon Oscillation Spectroscopic Survey

    Get PDF
    We study the morphology of luminous and massive galaxies at 0.3<z<0.7 targeted in the Baryon Oscillation Spectroscopic Survey (BOSS) using publicly available Hubble Space Telescope imaging from COSMOS. Our sample (240 objects) provides a unique opportunity to check the visual morphology of these galaxies which were targeted based solely on stellar population modelling. We find that the majority (74+/-6%) possess an early-type morphology (elliptical or S0), while the remainder have a late-type morphology. This is as expected from the goals of the BOSS target selection which aimed to predominantly select slowly evolving galaxies, for use as cosmological probes, while still obtaining a fair fraction of actively star forming galaxies for galaxy evolution studies. We show that a colour cut of (g-i)>2.35 selects a sub-sample of BOSS galaxies with 90% early-type morphology - more comparable to the earlier Luminous Red Galaxy (LRG) samples of SDSS-I/II. The remaining 10% of galaxies above this cut have a late-type morphology and may be analogous to the "passive spirals" found at lower redshift. We find that 23+/-4% of the early-type galaxies are unresolved multiple systems in the SDSS imaging. We estimate that at least 50% of these are real associations (not projection effects) and may represent a significant "dry merger" fraction. We study the SDSS pipeline sizes of BOSS galaxies which we find to be systematically larger (by 40%) than those measured from HST images, and provide a statistical correction for the difference. These details of the BOSS galaxies will help users of the data fine-tune their selection criteria, dependent on their science applications. For example, the main goal of BOSS is to measure the cosmic distance scale and expansion rate of the Universe to percent-level precision - a point where systematic effects due to the details of target selection may become important.Comment: 18 pages, 11 figures; v2 as accepted by MNRA
    corecore