56 research outputs found

    Solar wind sputtering of dust on the surface of 67P/Churyumov-Gerasimenko

    Get PDF
    International audienceFar away from the Sun, at around 3 AU, the activity of comet 67P/Churyumov-Gerasimenko is low and changes with local time (solar insolation), with location (chemical heterogeneity of the surface), and with season. When the activity is very low because the total cross section of the comet against the Sun is small, the solar wind has access to the surface of the comet and causes ion-induced sputtering of surface material, which we wish to observe.Methods. We used the Double Focussing Mass Spectrometer (DFMS) of the ROSINA experiment on ESA’s Rosetta mission to search for mass spectrometric evidence of sputtered refractory species. In high-resolution mode, DFMS can separate some of the mass peaks of refractory elements from the many volatile species present in the coma.Results. At present, the locations of solar wind surface access are in the southern hemisphere of the comet (the local winter). Of particular interest is sputtering of dust grains on the surface. We observe global averages over the winter hemisphere of the refractory elements Na, K, Si, and Ca, presumably sputtered from grains residing on the surface. Compared to carbonaceous chondrites, the comet has the same Na abundance, is depleted in Ca, and has an excess of K. In addition, for Si the signal strength is strong enough to compile a coarse compositional map of the southern hemisphere. Most, perhaps all, of the observed variation can be explained by the solar wind being affected by the atmosphere of the comet

    Sulphur-bearing species in the coma of comet 67P/Churyumov–Gerasimenko

    Get PDF
    Several sulphur-bearing species have already been observed in different families of comets. However, the knowledge on the minor sulphur species is still limited. The comet’s sulphur inventory is closely linked to the pre-solar cloud and holds important clues to the degree of reprocessing of the material in the solar nebula and during comet accretion. Sulphur in pre-solar clouds is highly depleted, which is quite puzzling as the S/O ratio in the diffuse interstellar medium is cosmic. This work focuses on the abundance of the previously known species H2S, OCS, SO, S2, SO2 and CS2 in the coma of comet 67P/Churyumov–Gerasimenko measured by Rosetta Orbiter Spectrometer for Ion and Neutral Analysis/Double Focusing Mass Spectrometer between equinox and perihelion 2015. Furthermore, we present the first detection of S3, S4, CH3SH and C2H6S in a comet, and we determine the elemental abundance of S/O in the bulk ice of (1.47 ± 0.05) × 10−2. We show that SO is present in the coma originating from the nucleus, but not CS in the case of 67P, and for the first time establish that S2 is present in a volatile and a refractory phase. The derived total elemental sulphur abundance of 67P is in agreement with solar photospheric elemental abundances and shows no sulphur depletion as reported for dense interstellar clouds. Also the presence of S2 at heliocentric distances larger than 3 au indicates that sulphur-bearing species have been processed by radiolysis in the pre-solar cloud and that at least some of the ice from this cloud has survived in comets up the present

    Halogens as tracers of protosolar nebula material in comet 67P/Churyumov–Gerasimenko

    Get PDF
    We report the first in situ detection of halogens in a cometary coma, that of 67P/ChuryumovGerasimenko. Neutral gas mass spectra collected by the European Space Agency’s Rosetta spacecraft during four periods of interest from the first comet encounter up to perihelion indicate that the main halogen-bearing compounds are HF, HCl and HBr. The bulk elemental abundances relative to oxygen are ~8.9 × 10⁻⁔ for F/O, ~1.2 × 10⁻⁎ for Cl/O and ~2.5 × 10⁻⁶ for Br/O, for the volatile fraction of the comet. The cometary isotopic ratios for ³⁷Cl/³⁔Cl and ⁞ÂčBr/⁷âčBr match the Solar system values within the error margins. The observations point to an origin of the hydrogen halides in molecular cloud chemistry, with frozen hydrogen halides on dust grains, and a subsequent incorporation into comets as the cloud condensed and the Solar system formed

    Detection of argon in the coma of comet 67P/Churyumov-Gerasimenko

    Get PDF
    Comets have been considered to be representative of icy planetesimals that may have contributed a significant fraction of the volatile inventory of the terrestrial planets. For example, comets must have brought some water to Earth. However, the magnitude of their contribution is still debated. We report the detection of argon and its relation to the water abundance in the Jupiter family comet 67P/Churyumov-Gerasimenko by in situ measurement of the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) mass spectrometer aboard the Rosetta spacecraft. Despite the very low intensity of the signal, argon is clearly identified by the exact determination of the mass of the isotope 36Ar and by the 36Ar/38Ar ratio. Because of time variability and spatial heterogeneity of the coma, only a range of the relative abundance of argon to water can be given. Nevertheless, this range confirms that comets of the type 67P/Churyumov-Gerasimenko cannot be the major source of Earth’s major volatiles

    Sulfur Isotopic Ratios at 67P/Churyumov-Gerasimenko and Characterization of ROSINA-DFMS FM & FS

    Get PDF
    Comets are thought to be the most pristine bodies present in the Solar System. In consequence of spending the majority of their existence beyond 30 AU, their composition can give insights on the physical and chemical conditions during their formation. Since August 2014 the European Space Agency spacecraft Rosetta accompanies the Jupiter family comet 67P/Churyumov-Gerasimenko on its way to perihelion and beyond. In this study the isotope fractionation of 34S are reported in H2S, OCS, SO2, S2, and CS2 at 67P. In addition for the first time the isotope fractionation for 33S is presented for cometary volatiles. The ratio 32S/33S is given for H2S, SO2 and a tentative value is given for CS2. With a mean value of -50 ± 22‰ and -306 ± 31‰ for ÎŽ34S and ÎŽ33S respectively, H2S shows a significant depletion in both 34S and 33S. For SO2 the depletion is less distinct with ÎŽ34S and ÎŽ33S being -67 ± 40‰ and -130 ± 53‰, respectively. The strongest depletion is present for CS2 with -114 ± 21‰and -276 ± 55‰, respectively. For OCS and S2 only ÎŽ34S could be determined which is -252 ± 77‰ and -357 ± 145‰, respectively. A comparison with sulfur isotopic ratios measured in SiC grains revealed that both SiC grains and the five volatile species have similar sulfur isotopic ratios. However, it is beyond the scope of this work to investigate the possibility of a link between SiC grains and cometary ices. Nevertheless, mass-dependent or mass-independent fractionation due to photo dissociation can be ruled out as sole cause of the seen depletion of 33S and 34S. Furthermore, an upper limit of (9.64 ± 0.19)·10.4 for D/H in HDS has been determined. This value is about a factor two higher than D/H in H2O for the same comet reported by (Altwegg et al., 2015). Besides the investigation concerning isotopic ratios of sulfur bearing species in this work the calibration and characterization of ROSINA/DFMS has been continued. Here it is reported about the deviation of the mass scale for MCP/LEDA low resolution spectra and the calibration measurements performed in the laboratory. Furthermore the outcome of the attempt to describe the sensitivity of DFMS with an empirical function will be discussed. The last part of the characterization of DFMS is dedicated to determine the so-called individual pixel gain for the laboratory and the flight model. Moreover, correlation between the depletion’s manifestation of the MCP with respect to the applied voltages has been investigated for both models. It has been found that further measurements are needed to understand the manifestation of depletion at the laboratory model. For the model on board of Rosetta it could be shown that most of the present feature are due to the usage of the MCP and suggestions have been made in order to answer the remaining question considering the depletion of the MCP

    Cometary isotopic measurments

    Get PDF
    Isotopic ratios in comets provide keys for the understanding of the origin of cometary material, and the physical and chemical conditions in the early Solar Nebula. We review here measurments aquired on the D/H, 14N/15N, 16O/18O. 12C/13C, and 32S/34S ratios in cometary grains and gases, and discuss their cosmogonic implications. The review includes analyses of potential cometary material available in collections on Earth, recent measurements achieved with the Herschel Space Observatory, large optical telescopes, and Rosetta, as well as recent results obtained from models of chemical-dynamical deuterium fractionation in the early solar nebula. Prospects for future measurements are presented

    ROSINA/DFMS capabilities to measure isotopic ratios in water at comet 67P/Churyumov–Gerasimenko

    Get PDF
    The likelihood that comets may have delivered part of the water to Earth has been reinforced by the recent observation of the earth-like D/H ratio in Jupiter-family comet 103P/Hartley 2 by Hartogh et al. (2011). Prior to this observation, results from several Oort cloud comets indicated a factor of 2 enrichment of deuterium relative to the abundance at Earth. The European Space Agency’s Rosetta spacecraft will encounter comet 67P/Churyumov-Gerasimenko, another Jupiter-family comet of likely Kuiper belt origin, in 2014 and accompany it from almost aphelion to and past perihelion. Onboard Rosetta is the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) which consists of two mass spectrometers and a pressure sensor [Balsiger et al. 2007]. With its unprecedented mass resolution, for a space-borne instrument, the Double Focusing Mass Spectrometer (DFMS), one of the major subsystems of ROSINA, will be able to obtain unambiguously the ratios of the isotopes in water from in situ measurements in the coma around the comet. We will discuss the performance of this sensor on the basis of measurements of the terrestrial hydrogen and oxygen isotopic ratios performed with the flight spare instrument in the lab. We also show that the instrument on Rosetta is capable of measuring the D/H even in the very low density water background released by the spacecraft. This capability demonstrates that ROSINA should obtain very sensitive measurements of these ratios in the cometary environment. These measurements will allow detection of fractionation as function of the distance from the nucleus as well as fractionation due to mechanisms that are correlated with heliocentric distance
    • 

    corecore