96 research outputs found

    Ground Processing of Cassini RADAR Imagery of Titan

    Get PDF
    The Cassini RADAR instrument onboard the Cassini Orbiter is currently collecting SAR Imagery of the surface of Saturn's largest moon, Titan. This paper describes the ground processing of Cassini SAR data. We focus upon the unusual features of the data and how these features impact the processing. We exhibit a data dependent mechanism we have implemented for eliminating artifacts due to attitude and ephemeris knowledge error. Finally we describe how we trade-off SAR performance vs. area of coverage when we design our spacecraft pointing profiles

    Cassini RADAR Sequence Planning and Instrument Performance

    Get PDF
    The Cassini RADAR is a multimode instrument used to map the surface of Titan, the atmosphere of Saturn, the Saturn ring system, and to explore the properties of the icy satellites. Four different active mode bandwidths and a passive radiometer mode provide a wide range of flexibility in taking measurements. The scatterometer mode is used for real aperture imaging of Titan, high-altitude (around 20 000 km) synthetic aperture imaging of Titan and Iapetus, and long range (up to 700 000 km) detection of disk integrated albedos for satellites in the Saturn system. Two SAR modes are used for high- and medium-resolution (300-1000 m) imaging of Titan's surface during close flybys. A high-bandwidth altimeter mode is used for topographic profiling in selected areas with a range resolution of about 35 m. The passive radiometer mode is used to map emission from Titan, from Saturn's atmosphere, from the rings, and from the icy satellites. Repeated scans with differing polarizations using both active and passive data provide data that can usefully constrain models of surface composition and structure. The radar and radiometer receivers show very good stability, and calibration observations have provided an absolute calibration good to about 1.3 dB. Relative uncertainties within a pass and between passes can be even smaller. Data are currently being processed and delivered to the planetary data system at quarterly intervals one year after being acquired

    The osteoarthritis prevention study (TOPS) - A randomized controlled trial of diet and exercise to prevent Knee Osteoarthritis:Design and rationale

    Get PDF
    Background: Osteoarthritis (OA), the leading cause of disability among adults, has no cure and is associated with significant comorbidities. The premise of this randomized clinical trial is that, in a population at risk, a 48-month program of dietary weight loss and exercise will result in less incident structural knee OA compared to control. Methods/design: The Osteoarthritis Prevention Study (TOPS) is a Phase III, assessor-blinded, 48-month, parallel 2 arm, multicenter randomized clinical trial designed to reduce the incidence of structural knee OA. The study objective is to assess the effects of a dietary weight loss, exercise, and weight-loss maintenance program in preventing the development of structural knee OA in females at risk for the disease. TOPS will recruit 1230 ambulatory, community dwelling females with obesity (Body Mass Index (BMI) ​≥ ​30 ​kg/m2) and aged ≥50 years with no radiographic (Kellgren-Lawrence grade ≤1) and no magnetic resonance imaging (MRI) evidence of OA in the eligible knee, with no or infrequent knee pain. Incident structural knee OA (defined as tibiofemoral and/or patellofemoral OA on MRI) assessed at 48-months from intervention initiation using the MRI Osteoarthritis Knee Score (MOAKS) is the primary outcome. Secondary outcomes include knee pain, 6-min walk distance, health-related quality of life, knee joint loading during gait, inflammatory biomarkers, and self-efficacy. Cost effectiveness and budgetary impact analyses will determine the value and affordability of this intervention. Discussion: This study will assess the efficacy and cost effectiveness of a dietary weight loss, exercise, and weight-loss maintenance program designed to reduce incident knee OA.Trial registration: ClinicalTrials.gov Identifier: NCT05946044.</p

    ERRATUM: "DETERMINING TITAN'S SPIN STATE FROM CASSINI RADAR IMAGES" (2008, AJ, 135, 1669)

    Get PDF
    We previously reported an initial determination of Titan's rotational state from fits to overlapping radar images. We have since discovered a coding error in software used to make these fits, which led to systematic offsets of 1-2 km in recovered positions. While our principal results remain qualitatively unchanged, with this error corrected, the pole movement we previously reported (our weakest result) is now counterindicated. Our revised best fit is essentially the same as the "best-fit no pole wobble" result discussed at the top of the second column on page 1675. The determined pole location did not change significantly after the bug fix and thus we still conclude that the spin axis is not in the plane formed by Titan's orbit normal and the normal to the Laplace plane. Due to the correlations between pole wobble and spin rate (see Figure 3 on page 1672), the new best fit has a spin rate that differs from the synchronous value by an amount that is three times smaller than the value reported in the paper. The pole location changed by less than 0.01 deg (~500 m on the surface) and rate of increase in spin decreased by a factor of 2 from the previous fit. The new best-fit parameter values with 1σ error bars are: pole right ascension 39.4934 ± 0.0249 deg, pole declination 83.4368 ± 0.0024 deg, spin rate 22.57731 ± 0.00011 deg/day (0.00033 deg/day greater than synchronous spin rate), derivative of pole right ascension –6.52 ± 4.20 deg/century, derivative of pole declination –0.2212 ± 0.3567 deg/century, and derivative of spin rate 0.0247 ± 0.0050 deg/day/century. The corrected version of Table 3 (below) shows the residual systematic and random error of the several candidate models discussed in the paper. Fixing the bug reduced the residual systematic error of all the fitted models. The four models in which spin rate is allowed to vary from synchronous either due to a change in spin rate (Column 5, numbered from the left) or a change in its time derivative (Column 6) or both (Columns 7 and 8) have lower residual systematic errors and thus better represent the data than do the purely synchronous fit (Column 3). For this reason, an asynchronous spin rate is still supported by the data, although efforts (e.g., Mitchell 2009) to quantitatively interpret the asynchroneity should take our revised determination into account. On the other hand, as depicted by Columns 7 and 8, allowing the pole movement terms to vary from the predicted (IAU Titan) values results in no significant improvement in the fit, thus large short-term pole movement is not supported by the data. In fact, the best-fit values and error bars for the pole movement are consistent with the long-term pole trends that were predicted prior to the Cassini mission

    Fall, Recovery and Characterization of the Novato L6 Chondrite Breccia

    Get PDF
    The Novato L6 chondrite fragmental breccia fell in California on 17 October 2012, and was recovered after the Cameras for Allsky Meteor Surveillance (CAMS) project determined the meteor's trajectory between 95 and 45 km altitude. The final fragmentation at 33 1 km altitude was exceptionally well documented by digital photographs. The first sample was recovered before rain hit the area. First results from a consortium study of the meteorite's characterization, cosmogenic and radiogenic nuclides, origin and conditions of the fall are presented. Some meteorites did not retain fusion crust and show evidence of spallation. Before entry, the meteoroid was 35+/-5 cm in diameter (mass 80+/-35 kg) with a cosmic ray exposure age of 9+/-1 Ma, if it had a one-stage exposure history. However, based on the cosmogenic nuclide inventory, a two-stage exposure history is more likely, with lower shielding in the last few Ma. Thermoluminescence data suggest a collision event within the last approx. 0.1 Ma. Novato likely belonged to the class of shocked L chondrites that have a common shock age of 470 Ma, based on the U,Th-He age of 460+/-220 Ma. The measured orbits of Novato, Jesenice and Innisfree are consistent with a proposed origin of these shocked L chondrites in the Gefion asteroid family, but leave open the possibility that they came to us directly from the 5:2 mean motion resonance with Jupiter. Novato experienced a stronger compaction than did other L6 chondrites of shock-stage S4. Despite this, a freshly broken surface shows a wide range of organic compounds

    LSST: from Science Drivers to Reference Design and Anticipated Data Products

    Get PDF
    (Abridged) We describe here the most ambitious survey currently planned in the optical, the Large Synoptic Survey Telescope (LSST). A vast array of science will be enabled by a single wide-deep-fast sky survey, and LSST will have unique survey capability in the faint time domain. The LSST design is driven by four main science themes: probing dark energy and dark matter, taking an inventory of the Solar System, exploring the transient optical sky, and mapping the Milky Way. LSST will be a wide-field ground-based system sited at Cerro Pach\'{o}n in northern Chile. The telescope will have an 8.4 m (6.5 m effective) primary mirror, a 9.6 deg2^2 field of view, and a 3.2 Gigapixel camera. The standard observing sequence will consist of pairs of 15-second exposures in a given field, with two such visits in each pointing in a given night. With these repeats, the LSST system is capable of imaging about 10,000 square degrees of sky in a single filter in three nights. The typical 5σ\sigma point-source depth in a single visit in rr will be 24.5\sim 24.5 (AB). The project is in the construction phase and will begin regular survey operations by 2022. The survey area will be contained within 30,000 deg2^2 with δ<+34.5\delta<+34.5^\circ, and will be imaged multiple times in six bands, ugrizyugrizy, covering the wavelength range 320--1050 nm. About 90\% of the observing time will be devoted to a deep-wide-fast survey mode which will uniformly observe a 18,000 deg2^2 region about 800 times (summed over all six bands) during the anticipated 10 years of operations, and yield a coadded map to r27.5r\sim27.5. The remaining 10\% of the observing time will be allocated to projects such as a Very Deep and Fast time domain survey. The goal is to make LSST data products, including a relational database of about 32 trillion observations of 40 billion objects, available to the public and scientists around the world.Comment: 57 pages, 32 color figures, version with high-resolution figures available from https://www.lsst.org/overvie

    Characterizing Long COVID: Deep Phenotype of a Complex Condition.

    Get PDF
    BACKGROUND: Numerous publications describe the clinical manifestations of post-acute sequelae of SARS-CoV-2 (PASC or long COVID ), but they are difficult to integrate because of heterogeneous methods and the lack of a standard for denoting the many phenotypic manifestations. Patient-led studies are of particular importance for understanding the natural history of COVID-19, but integration is hampered because they often use different terms to describe the same symptom or condition. This significant disparity in patient versus clinical characterization motivated the proposed ontological approach to specifying manifestations, which will improve capture and integration of future long COVID studies. METHODS: The Human Phenotype Ontology (HPO) is a widely used standard for exchange and analysis of phenotypic abnormalities in human disease but has not yet been applied to the analysis of COVID-19. FINDINGS: We identified 303 articles published before April 29, 2021, curated 59 relevant manuscripts that described clinical manifestations in 81 cohorts three weeks or more following acute COVID-19, and mapped 287 unique clinical findings to HPO terms. We present layperson synonyms and definitions that can be used to link patient self-report questionnaires to standard medical terminology. Long COVID clinical manifestations are not assessed consistently across studies, and most manifestations have been reported with a wide range of synonyms by different authors. Across at least 10 cohorts, authors reported 31 unique clinical features corresponding to HPO terms; the most commonly reported feature was Fatigue (median 45.1%) and the least commonly reported was Nausea (median 3.9%), but the reported percentages varied widely between studies. INTERPRETATION: Translating long COVID manifestations into computable HPO terms will improve analysis, data capture, and classification of long COVID patients. If researchers, clinicians, and patients share a common language, then studies can be compared/pooled more effectively. Furthermore, mapping lay terminology to HPO will help patients assist clinicians and researchers in creating phenotypic characterizations that are computationally accessible, thereby improving the stratification, diagnosis, and treatment of long COVID. FUNDING: U24TR002306; UL1TR001439; P30AG024832; GBMF4552; R01HG010067; UL1TR002535; K23HL128909; UL1TR002389; K99GM145411
    corecore