5,529 research outputs found

    Dynamical Scalar Degree of Freedom in Horava-Lifshitz Gravity

    Full text link
    We investigate the linear cosmological perturbations of Ho\v{r}ava-Lifshitz gravity in a FRW universe without any matter. Our results show that a new gauge invariant dynamical scalar mode emerges, due to the gauge transformation under the "foliation-preserving" diffeomorphism and "projectability condition", and it can produce a scale invariant power spectrum. In the infrared regime with λ=1\lambda=1, the dynamical scalar degree of freedom turns to be a non-dynamical one at the linear order level.Comment: 5pages, no figures, references added, version to appear in PRD(R

    Development Of Twin-screw Steam Compressor with Water Sealing

    Get PDF

    Dark Energy Perturbations Revisited

    Full text link
    In this paper we study the evolution of cosmological perturbations in the presence of dynamical dark energy, and revisit the issue of dark energy perturbations. For a generally parameterized equation of state (EoS) such as w_D(z) = w_0+w_1\frac{z}{1+z}, (for a single fluid or a single scalar field ) the dark energy perturbation diverges when its EoS crosses the cosmological constant boundary w_D=-1. In this paper we present a method of treating the dark energy perturbations during the crossing of the wD=−1w_D=-1 surface by imposing matching conditions which require the induced 3-metric on the hypersurface of w_D=-1 and its extrinsic curvature to be continuous. These matching conditions have been used widely in the literature to study perturbations in various models of early universe physics, such as Inflation, the Pre-Big-Bang and Ekpyrotic scenarios, and bouncing cosmologies. In all of these cases the EoS undergoes a sudden change. Through a detailed analysis of the matching conditions, we show that \delta_D and \theta_D are continuous on the matching hypersurface. This justifies the method used[1-4] in the numerical calculation and data fitting for the determination of cosmological parameters. We discuss the conditions under which our analysis is applicable.Comment: 10 pages and 1 figure

    Cellulose Acetate Reverse Osmosis Membranes for Desalination: A Short Review

    Get PDF
    Freshwater scarcity is a critical challenge that human society has to face in the 21st century. Desalination of seawater by reverse osmosis (RO) membranes was regarded as the most promising technology to overcome the challenge given that plenty of potential fresh water resources in oceans. However, the requirements for high desalination efficiency in terms of permeation flux and rejection rate become the bottle-neck which needs to be broken down by developing novel RO membranes with new structure and composition. Cellulose acetate RO membranes exhibited long durability, chlorine resistance, and outstanding desalination efficiency that are worthy of being recalled to address the current shortcomings brought by polyamide RO membranes. In terms of performance enhancement, it is also important to use new ideas and to develop new strategies to modify cellulose acetate RO membranes in response to those complex challenges. Therefore, we focused on the state of the art cellulose acetate RO membranes and discussed the strategies on membrane structural manipulation adjusted by either phase separation or additives, which offered anti-fouling, anti-bacterial, anti-chlorine, durability, and thermo-mechanical properties to the modified membranes associated with the desalination performance, i.e., permeation flux and rejection rate. The relationship between membrane structure and desalination efficiency was investigated and established to guide the development of cellulose acetate RO membranes for desalination. 

    Implementing universal nonadiabatic holonomic quantum gates with transmons

    Get PDF
    Geometric phases are well known to be noise-resilient in quantum evolutions/operations. Holonomic quantum gates provide us with a robust way towards universal quantum computation, as these quantum gates are actually induced by nonabelian geometric phases. Here we propose and elaborate how to efficiently implement universal nonadiabatic holonomic quantum gates on simpler superconducting circuits, with a single transmon serving as a qubit. In our proposal, an arbitrary single-qubit holonomic gate can be realized in a single-loop scenario, by varying the amplitudes and phase difference of two microwave fields resonantly coupled to a transmon, while nontrivial two-qubit holonomic gates may be generated with a transmission-line resonator being simultaneously coupled to the two target transmons in an effective resonant way. Moreover, our scenario may readily be scaled up to a two-dimensional lattice configuration, which is able to support large scalable quantum computation, paving the way for practically implementing universal nonadiabatic holonomic quantum computation with superconducting circuits.Comment: v3 Appendix added, v4 published version, v5 published version with correction
    • …
    corecore