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Geometric phases are well known to be noise resilient in quantum evolutions and operations. Holonomic quan-
tum gates provide us with a robust way towards universal quantum computation, as these quantum gates are actually
induced by non-Abelian geometric phases. Here we propose and elaborate how to efficiently implement universal
nonadiabatic holonomic quantum gates on simpler superconducting circuits, with a single transmon serving as a
qubit. In our proposal, an arbitrary single-qubit holonomic gate can be realized in a single-loop scenario by varying
the amplitudes and phase difference of two microwave fields resonantly coupled to a transmon, while nontrivial
two-qubit holonomic gates may be generated with a transmission-line resonator being simultaneously coupled to
the two target transmons in an effective resonant way. Moreover, our scenario may readily be scaled up to a two-
dimensional lattice configuration, which is able to support large scalable quantum computation, paving the way for
practically implementing universal nonadiabatic holonomic quantum computation with superconducting circuits.

DOI: 10.1103/PhysRevA.97.022332

I. INTRODUCTION

As is known, a concept of phase factors is one of the most
fundamental ones in quantum physics. In particular, the state
of a quantum system acquires a geometric phase in addition
to the conventional dynamic one in a cyclic and adiabatic
evolution [1]. As geometric phases are determined by the
global properties of the evolution paths, they possess a kind of
built-in noise-resilience feature against certain types of local
noises [2–5], which may naturally be used to achieve high-
fidelity quantum gates. For a practical larger system of qubits,
the control lines and devices inevitably induce local noises, and
thus it is much more preferable to implement quantum gates
in a geometric way. For this, considerable interest has been
paid to various applications of geometric phases in quantum
computation [6]. Moreover, due to the noncommutativity, non-
Abelian geometric phases [7] can naturally lead to a universal
set of quantum gates, i.e., the so-called holonomic quantum
computation [8].

On the side of physical implementation, schemes for quan-
tum computation with non-Abelian geometric phases have
been proposed for a variety of systems based on the adiabatic
evolution with multilevel systems [9–17], which appear to
be rather complicated and thus difficult for experimental
realization. Furthermore, the adiabatic condition requires the
quantum dynamics to be slow, and thus decoherence effects
may also introduce considerable errors [18,19]. Therefore, it
is highly desirable to physically implement quantum gates
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with nonadiabatic evolutions [20], in which the adiabatic
condition is not required. For the past five years, significant
research efforts have been devoted to the nonadiabatic holo-
nomic quantum computation (NHQC) with three-level systems
[21–36], according to which fast holonomic quantum gates
may be obtained with simpler physical systems. Notably, such
a nonadiabatic idea has experimentally been demonstrated
in superconducting circuits [37], NMR [38,39], and electron
spins in diamond [40–43].

Due to the good flexibility and scalability, superconducting
quantum circuits [44–47] have been one of the promising plat-
forms for implementing quantum computation. Recently, high
energy levels of a superconducting transmon qubit [48] were
also shown to possess long coherence times [49], which means
transmons can also be used as multilevel quantum systems.
However, the spectrum of transmons is weakly anharmonic and
thus leads to spectral crowding in multiqubit scenarios where
qubit-qubit interactions are induced by dispersive couplings
between transmission-line resonators (TLRs) and transmon
qubits [27]. Also, as to NHQC, the complicated interaction
needed for a nontrivial two-qubit holonomic gate [21] is
still experimentally challenging, and thus only single-qubit
gates have been achieved experimentally [37]. Therefore, it
is extremely desirable to implement the two-qubit gates using
only the simple resonant TLR-qubit interaction.

Here we propose and elaborate on how to implement univer-
sal NHQC using superconducting circuits, which removes the
above-mentioned difficulties. In the current implementation,
each transmon serves as a qubit, as in the experiment of
Ref. [37]. An arbitrary holonomic single-qubit gate can be
obtained by varying the amplitudes and phase difference
of two microwave fields resonantly coupled to a transmon,
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FIG. 1. Illustration of the proposed scheme. (a) The cou-
pling configuration for the single-qubit gates with two microwave
fields resonantly coupled to the three levels of a transmon qubit.
(b) Geometric illustration of the proposed single-qubit gate. (c) For
nontrivial two-qubit gates, both qubits are coupled a TLR and driven
by microwave fields, which induced effective resonant qubit-TLR
coupling. (d) In this single-excitation subspace, the effective coupling
configuration for the two qubits and the TLR for nontrivial two-qubit
gates. (e) Scale-up of our scheme, where the transmon qubits and
TLRs are denoted by filled circles and bonds, respectively.

where an arbitrary single-qubit gate can be realized by using
a single implemented gate, i.e., a single cyclic evolution.
Therefore, it is an extension of the nonadiabatic holonomic
single-qubit gates demonstrated in Ref. [37], which combines
two sequential gates to obtain an arbitrary single-qubit gate,
and thus is essentially different from our implementation.
Moreover, nontrivial two-qubit gates can be achieved with a
TLR being simultaneously coupled to the two qubits driven
by microwave fields, in which the effective resonant tunable
TLR-qubit couplings are induced, as in Ref. [50], for the
two involved qubits. In this configuration, the three coupled
quantum system can also be seen as a three-level system in
the single-excitation subspace, and thus can be directly used to
induce nontrivial two-qubit gates, in analogy to the single-qubit
case. In addition, the present scenario can readily be scaled up
to a two-dimensional lattice for scalable quantum computation.

II. UNIVERSAL SINGLE-QUBIT GATES

We now proceed to present our scheme. We first address
how to implement an arbitrary single-qubit gate, as shown
in Fig. 1(a), which consists of two microwave fields with
amplitudes �ie(t) (i = 0,1) and initial phases φi resonantly
coupled to the sequential transitions of the three lowest levels
|g〉, |e〉, and |f 〉 of a transmon, with |g〉 and |f 〉 being the qubit
states. The Hamiltonian of the system may be written as

H1 = �0e(t)eiφ0 |g〉〈e| + eiφ1�1e(t)|f 〉〈e| + H.c.

= �(t)ei(φ1−π)

(
sin

θ

2
eiφ|g〉 − cos

θ

2
|f 〉

)
〈e| + H.c.,

(1)

where φ = φ0 − φ1 + π , �(t) =
√

�0e(t)2 + �1e(t)2, and
tan(θ/2) = �0e(t)/�1e(t). That is, the dynamics of the system
is captured by the resonant coupling between the states |b〉 =
sin(θ/2)eiφ|g〉 − cos(θ/2)|f 〉 and |e〉, while the dark eigen-
state |d〉 = cos(θ/2)|g〉 + sin(θ/2)eiφ|f 〉 is left unchanged.
Therefore, when the cyclic evolution condition is met, i.e.,∫ T

0 �(t)dt = π , one can obtain a certain single-qubit gate by
choosing different θ and/or φ. Meanwhile, as 〈j (t)|H1|i(t)〉 =
0 with i ∈ {b,d}, there are no transitions between the |d〉
and |b〉 states during the evolution (meet the parallel-transport
condition), and the dynamical phases for the |d〉 and |b〉 states
are also zero. Therefore, the obtained single-qubit gates are of
the holonomic nature [21].

To achieve the set of universal single-qubit gates in a
more general scenario, we set the total evolution time T to
be divided into two equal intervals, i.e., φ0 = 0, φ1 = π for
t ∈ [0,T /2], and φ′

0 = π + γ , φ′
1 = γ for t ∈ [T/2,T ]. In

this case, the Hamiltonians that dominate the two consecu-
tive evolution paths are Ha = λ1(|b〉〈e| + |e〉〈b|) and Hb =
−λ1(eiγ |b〉〈e| + e−iγ |e〉〈b|), and the corresponding evolution
operators are, respectively, Ua = |d〉〈d| − i(|b〉〈e| + |e〉〈b|)
and Ub = |d〉〈d| + i(eiγ |b〉〈e| + e−iγ |e〉〈b|). As a result, the
single-qubit gate operator is given by

U1(θ,φ) ∼
(

cos γ

2 − i sin γ

2 cos θ −i sin γ

2 sin θeiφ

−i sin γ

2 sin θe−iφ cos γ

2 + i sin γ

2 cos θ

)

= exp
(
−i

γ

2
n · σ

)
, (2)

which describes a rotation operation around the axis n =
(sin θ cos φ, sin θ sin φ, cos θ ) by an angle γ /2 and can gener-
ate the set of universal single-qubit gates in the qubit subspace,
up to a global phase factor exp(iγ /2), in a holonomic way
[30]. For instance, for the two different set of (θ,φ), the
corresponding two sets of gates (with different γ ) form a
universal set of single-qubit ones. Also from a geometrical
point of view, the above two Hamiltonians correspond to two
different paths in the Bloch sphere in a consecutive and cyclic
way: the final point (at T/2) of Ha is coincident with the start
point (at T/2) of Hb, while the final point (at T ) of Hb is just
the starting point of Ha (at 0). That is, the two paths coincide at
0 and T/2, with the cyclic geometric phase being illustrated as
the slice contour in Fig. 1(b). We want to emphasize that �(t) in
our single-loop scheme can be in an arbitrary shape, providing
that the two microwave fields are in the same shape. This is due
to the fact that our scheme is a resonant one, which is a merit
compared with the two most recent experiments [42,43] with
detuning. In the detuned schemes, the detuning to the auxiliary
state should also be in the same shape as the driven fields,
which makes the experiment more difficult as the frequencies
of driven fields must also be changed in order to change the
detuning. Therefore, the experiments [42,43] are done with
square pulses to avoid tuning the detuning. In this case, an ideal
square pulse is needed, which is difficult for a large-amplitude
pulse as the pulse will be very sharp, and thus leads to
infidelity [43].

The performance of a single-qubit gate in Eq. (2)
can be evaluated by using the following quantum master
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FIG. 2. State population and fidelity dynamics of different (γ,θ )
gates, (a) (π,π/2) and (b) (π/2,π/2), as a function of �N/Et/π with
the initial state being |g〉. (c) Dynamics of the gate fidelities. (d) The
stability of the NOT gate to certain random fluctuations ε�.

equation:

ρ̇1 = i[ρ1,H1] + 1

2

∑
j∈{g,f }

[
�

j

1L
(
σ−

j,e

) + �
j

2L
(
σ z

j,e

)]
, (3)

where ρ1 is the density matrix of the considered system
and L(A) = 2Aρ1A

† − A†Aρ1 − ρ1A
†A is the Lindbladian of

the operator A, σ−
g,e = |g〉〈e|, σ−

f,e = |e〉〈f |, σ z
f,e = (|f 〉〈f | −

|e〉〈e|), and σ z
g,e = (|e〉〈e| − |g〉〈g|). In addition, κ , �j

1 , and �
j

2
are the decay rate of the cavity, the decay and dephasing rates
of the {j,e} two-level systems, respectively. Suppose that the
qubit is initially in the state |g〉. We then evaluate the NOT gate
of γ = π,θ = π/2 and the gate with γ = π/2,θ = π/2, using
the fidelity defined by F = 〈ψf |ρ1|ψf 〉 with |ψf 〉 = |f 〉 and
|ψf 〉 = [(1 + i)|g〉 + (1 − i)|f 〉]/2 being the corresponding
target state. The obtained fidelities are as high as FN = 99.75%
and FE = 99.56% at t = π/�N/E , as shown in Figs. 2(a)
and 2(b). The infidelity is mainly due to relaxation and
dephasing of the qubits and the resonator. The parameters of
the qubit are set as �(t) = 2π × 16 MHz, and �

j

1 = �
j

2 = κ =
2π × 10 kHz, corresponding to the coherent time of 16 μs,
which is easily accessible with current technologies [49]. The
anharmonicity of the third level is set to be α = ωge − ωf e =
2π × 400 MHz [47]. We modulate �0e = �1e = �N/E/

√
2

to ensure θ = π/2. In addition, for a general initial state
of |ψ〉 = cos θ

′ |g〉 + sin θ
′ |f 〉 where θ

′ = 0 corresponds to
the |0〉 state, we have numerically confirmed that the fidelity
changes slightly when θ

′
> 0. Therefore, to fully quantify the

performance of the implemented gate, in Fig. 2(c) we have
plotted the gate fidelities for 1001 input states with θ

′
uniformly

distributed over [0,2π ], where we find that FN = 99.82% and
FE = 99.57%. On the other hand, we numerically demonstrate
that the gate is also insensitive to certain random fluctuations
with relatively high frequencies. The randomized fluctuation
is artificially introduced by adding an amplitude shift to � as

�
′ = (1 + ε)�, where ε has 1000 points of noise and a mean

value of zero. In the absence of decoherence, the fidelity of the
NOT gate is almost stable at 1 when ε increases up to 20%.

III. NONTRIVIAL TWO-QUBIT GATES

At this stage, we turn to the implementation of nontrivial
two-qubit gates, where we consider the case that the two
driving qubits are coupled simultaneously to a nonlinear TLR.
As illustrated in Fig. 1(c), both the TLR and the driving
microwave field are dispersively coupled with the transitions
|g〉 ↔ |e〉 and |f 〉 ↔ |e〉 with frequencies ωge and ωf e, the
coupling strength for the ith qubit being gi and �i and their
corresponding frequencies being ωc and ωi . Meanwhile, the
two couplings form a two-photon resonant situation, i.e., ωc −
ωge = ωf e − ωi = � > α, and thus lead to driving-assisted
coherent resonant coupling between the TLR and the |g〉 ↔
|f 〉 transition [50]. When � 	 {gi,�i}, after concealing the ac
Stark shifts by modulating the frequencies of the driven fields
accordingly to �i (see Fig. 4 in Appendix B), the interacting
system can be written as

H2 =
2∑

i=1

g̃i(e
−iϕi a|f 〉i〈g| + H.c.), (4)

where g̃i = √
2gi�iα/[�(� − α)] and ϕi is the initial phase

of the microwave driving field on ith qubit, see Appendix A
for details. Note that as � and α are comparable, the effective
interaction is obtained from the interference of the two paths
as illustrated in 1(c). In addition, we note that one can obtain
stronger g̃i by enlarging its corresponding �i . However, when
�i is large, the linear dependence of g̃i with respect to �i

will no longer hold, as the perturbation theory is not good
then. However, we can still get the g̃i and �i correspondence
numerically, as shown in Fig. 5 in Appendix B.

We now show that the Hamiltonian of Eq. (4) can readily
be employed to implement nontrivial two-qubit gates. In the
single-excitation subspace S1 = span{|f 0g〉,|g0f 〉,|g1g〉},
where |jnk〉 ≡ |j 〉1 ⊗ |n〉c ⊗ |k〉2 labels the product states of
the two qubits and the TLR, Eq. (4) may be rewritten as

Heff = g

(
sin

ϑ

2
|f 0g〉 − cos

ϑ

2
|g0f 〉

)
〈g1g| + H.c., (5)

where g =
√
g̃2

1 + g̃2
2 , tan(ϑ/2) = g̃1/g̃2. In the derivation,

we have also set ϕ1 = 0 and ϕ2 = π , i.e., a π difference
for the initial phases of the two driving microwave fields.
Equation (5) establishes a coupled three-level Hamiltonian in
the single-excitation subspace, with the TLR excitation state
|g1g〉 to serve as an ancillary state, as shown in Fig. 1(d),
being the same as that of single-qubit gate case. Therefore,
holonomic quantum gates can be obtained for the two-qubit
states |f 0g〉 and |g0f 〉, which are the odd parity subspace
{|gf 〉,|gf 〉} when neglecting the states of the TLR (always
to be the vacuum state after a gate operation). We want to
emphasize that our construction of the two-qubit gate involves
only a single three-level structure in the two-qubit Hilbert
space, which is simper than that in Ref. [21], where the
two-qubit gates need two three-level structures. The dynam-
ics under Hamiltonian (5) can be captured by a resonant

022332-3



HONG, LIU, CAI, ZHANG, HU, WANG, AND XUE PHYSICAL REVIEW A 97, 022332 (2018)

0 0.5 1.0 1.5 2.0
0

0.2

0.4

0.6

0.8

1

t/T

| 0 〉
| 0 〉
| 1 〉
Loss

FIG. 3. State population and fidelity dynamics for gates as a
function of time with the initial state being |f 0g〉.

coupling between the bright state |b〉2 = sin(ϑ/2)|f 0g〉 −
cos(ϑ/2)|g0f 〉 of Hamiltonian (5) and the ancillary state
|g1g〉, with the effective Rabi frequency g, while the dark state
|d〉2 = cos(ϑ/2)|f 0g〉 + sin(ϑ/2)|g0f 〉 is decoupled. When∫ τ

0 gdt = π , the dressed states undergo a cyclic evolution,
with |b〉2 evolving to −|b〉2 and |d〉2 remaining unchanged.
Moreover, as 〈ψi(t)|H1|ψj(t)〉 = 0 with |ψi,j〉 ∈ {|d〉2,|b〉2},
the evolution satisfies the parallel-transport condition and
acquires no dynamical phases. Thus, the evolution operator
U2 = exp(−i

∫ τ

0 H2dt) realizes holonomic operations. In the
two-qubit gate Hilbert space S2 = span{|gg〉,|fg〉,|gf 〉,|ff 〉},
the corresponding gates are

U2(ϑ) =

⎛
⎜⎜⎝

1 0 0 0
0 cos ϑ sin ϑ 0
0 sin ϑ − cos ϑ 0
0 0 0 −1

⎞
⎟⎟⎠, (6)

which induces only a kind of nontrivial transformation to the
odd parity subspace of S2, as expected, and thus implements
nontrivial two-qubit gates. Meanwhile, the minus sign of the
|ff 〉〈ff | elements comes from the evolution of the dual two-
excitation subspaces of {|g1f 〉,|f 0f 〉,|f 1g〉}.

We now analyze the performance of two-qubit gates. For
� = 2π × 1 GHz, gi = 2π × 65 MHz [50], one can obtain

g̃i = g0 ×

⎧⎪⎨
⎪⎩

sin2(2πt/T ), 0 � t < T/4;

1, T /4 � t � 3T/4;

sin2[2π (T − t)/T ], 3T/4 < t � T ;

(7)

with T = 40 ns, g0 � 2π × 11.8 MHz by modulating �i with
the maximum value to be 2π × 377 MHz. In the case of ϑ =
π/2, the induced two-qubit gate is the SWAP-like gate for the
two qubits. When the initial state of the two-qubit state is |fg〉,
as shown in Fig. 3, a fidelity F2 = 99.27% can be obtained. We
want to emphasize that, the simulations must be done faithfully
based on the original Hamiltonian, i.e., including the unwanted
higher-order effects induced by the strong microwave drive,
such as off-resonant transitions to higher transmon levels. We
also note that there is loss from our computational basis, which
is due to the time dependence of the amplitude of the pulse in
Eq. (7), leading to the time dependence of the ac Stark shift
terms, which can also be compensated by modulating the pulse
frequencies ωi accordingly. However, as we conceal the energy

shifts, the loss is zero before and after the operation and thus
leads to high-fidelity gates.

IV. DISCUSSION AND CONCLUSION

Our proposal allows physical realization of universal nona-
diabatic holonomic quantum gates, i.e., single-qubit gates
on transmon qubits from individual control, and two-qubit
gates induced between any two qubits sharing the same TLR
serving as ancillary. As to the experimental feasibility of our
proposal, it is noted that the elementary gates require the
transmon qubits and the TLRs to be individually controlled.
Considering that both the dc and ac flux controls in coupled
superconducting qubits have already been achieved [51,52],
where the qubit loop sizes and their distances are on the order
of micrometers, the individual control of our scheme is quite
feasible with the current technologies. Moreover, the present
scheme may readily be scaled up to a two-dimensional lattice
configuration by placing the TLRs and transmon qubits in
an interlaced square lattice, as shown in Fig. 1(e), and thus
facilitating the scalability criteria of quantum computation.
Experimentally, a small lattice of this type has already been
demonstrated [53]. As for a large-scale lattice, the individual
control, wiring, and readout can be conveniently integrated in
an additional layer on top of the qubit lattice layer [54–56],
and the interlayer connection may be achieved by capacitive
coupling. Finally, we wish to note that our scheme is insensitive
to the background charge noise as it is made of only TLRs and
the charge-insensitive transmons [48]. For the flux type and
critical current type 1/f noise, the influence is even weaker
than the intrinsic decay effect [57], which has already been
considered within our numerical simulations.

To conclude, we have proposed and elaborated how to
efficiently implement universal NHQC with superconducting
transmon qubits with resonant coupling. Meanwhile, our
proposal can be scalable. It is anticipated that the present
simpler and more efficient scheme will stimulate significant
experimental interest for realizing it, paving the way for
implementing robust NHQC using superconducting circuits.
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APPENDIX A: THE EFFECTIVE HAMILTONIAN

We consider the effective Hamiltonian of Eq. (4) in the
main text, which deals with the effective Hamiltonian in
a projective subspace of the original Hamiltonian. For the
following Hamiltonian of the ith transmon coupled to the TLR,

H0 = δrna + δqnb + α

2
(nb − 1)nb,

(A1)

H ′ = gab† + �eiφ

2
b + H.c.,

where δr = ωc − ω with ω being the frequency of the drive
microwave field, δq = ωg,e − ω, and na = a†a,nb = b†b. With
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b = |g〉〈e| + |e〉〈f | + |f 〉〈h| + · · · being the lower operator
for the transmon, the energies of the state |g,1〉,|f,0〉 are

Ef,0 = 2δq + α, Eg,1 = δr , (A2)

which can be adjusted to be degenerate by modulating ωi such
that δr = 2δq + α.

We then define

P = |g,1〉〈g,1| + |f,0〉〈f,0|, (A3)

K =
∑
π

|i,n〉〈i,n|
εi,n − ε

, (A4)

where the subspace P is of interest and π :
{i,n|(i,n) 
= (g,1) or (f,0)}. In the following calculation,
we restrict ourselves within the qubit subspace of the first
four levels, as we only involve the first three levels in our gate
implementation.

Once we handle the effective Hamiltonian using a pertur-
bation theory with {g,�i} � � = δq − δr , the first-order term
is found to be

H̃1 = PH ′P = 0, (A5)

as

H ′P =
(

g|e,0〉 + �

2
e−iφ|e,1〉

)
〈g,1|

+
(√

2g|e,1〉 +
√

2�

2
eiφ|e,0〉 +

√
3e−iφ

2
|h,0〉

)
〈f,0|.

(A6)

As for the second-order terms,

H̃2 = −PH ′KH ′P

= −PH ′(K1 + K2 + K3)H ′P, (A7)

where

K1 = |e,0〉〈e,0|
εe,0 − ε

, K2 = |e,1〉〈e,1|
εe,1 − ε

, K3 = |h,0〉〈h,0|
εh,0 − ε

.

Finally, we have

H̃2 = ηg1|g,1〉〈g,1| + ηf 0|f,0〉〈f,0|
+ (g̃|f,0〉〈g,1| + H.c.), (A8)

where

ηg1 = �2

4(� − α)
− g2

�

ηf 0 = 2g2

� − α
− �2

2�
− 3�2

4(δq − 2α)

g̃ =
√

2g�e−iφ

2(� − α)
−

√
2g�e−iφ

2�
= g�e−iφα√

2�(� − α)
. (A9)

APPENDIX B: COMPENSATE OF THE AC STACK

In Eq. (A8), there are ac Stark shifts, which will lead to
∼3% infidelity of the gate operations. Therefore, we need to
compensate these shifts. It is noted that both g and � split the

FIG. 4. Illustration of the ac Stark shift to be compensated for
fixed g with respect to �.

degenerate subspace, so we will fix g and tune the frequency
ω of the driven field to let |ηg1g1 − ηf 0f 0| = 0, i.e.,

〈φj (�)| d

d�(t)
|φi(�)〉 = 0.

As

〈φj (�)| d

d�
|φi(�)〉 = 〈φj (�)|dH

d�
|φi(�)〉/(Ei − Ej ),

we obtain

〈φj (�)|∂H

∂�
|φi(�)〉 + dω

d�
〈φj (�)|∂H

∂�
|φi(�)〉 = 0,

which can be numerically solved to obtain the ω − � curve,
such that one can figure out the ac Stark shift �s to be
compensated, as shown in Fig 4.

Therefore, to effectively conceal the ac Stark shifts, we need
a driven pulse with smoothly changed amplitude, which leads
to a smoothly changed effectively resonant coupling strength
g̃. Also note that when � is large, the g̃i − � dependence will
be slightly nonlinear, as shown by the red dashed line in Fig. 5,
while the result of perturbation theory is indicated by the black
solid line.

FIG. 5. Illustration of the effective transmon-TLR coupling
strength with respect to �, with fixed g.
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