23 research outputs found

    Accessing Sodium Ferrate complexes containing neutral and anionic N-heterocyclic carbene ligands : structural, synthetic, and magnetic insights

    Get PDF
    This study reports the synthesis and single-crystal X-ray crystallographic, NMR spectroscopic, and magnetic characterization of a series of sodium ferrates using bis(amide) Fe(HMDS)2 as a precursor (HMDS = 1,1,1,3,3,3-hexamethyldisilazide). Reaction with sodium reagents NaHMDS and NaCH2SiMe3 in hexane afforded donor-solvent-free sodium ferrates [{NaFe(HMDS)3}∞] (1) and [{NaFe(HMDS)2(CH2SiMe3)}∞] (2), respectively, which exhibit contacted ion pair structures, giving rise to new polymeric chain arrangements made up of a combination of inter- and intramolecular Na···Me(HMDS) electrostatic interactions. Addition of the unsaturated NHC IPr (IPr = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene) to 1 and 2 caused deaggregation of their polymeric structures to form discrete NHC-stabilized solvent-separated ion pairs [Na(IPr)2]+[Fe(HMDS)3]- (3) and [(THF)3·NaIPr]+[Fe(HMDS)2CH2SiMe3]- (4), where in both cases, the NHC ligand coordinates preferentially to Na. In contrast, when IPr is sequentially reacted with the single-metal reagents NaCH2SiMe3 and Fe(HMDS)2, the novel heteroleptic ferrate (THF)3Na[:C{[N(2,6-iPr2C6H3)]2CHCFe(HMDS)2}] (5) is obtained. This contains an anionic NHC ligand acting as an unsymmetrical bridge between the two metals, coordinating through its abnormal C4 position to Fe and its normal C2 position to Na. The formation of 5 can be described as an indirect ferration process where IPr is first metalated at the C4 position by the polar sodium alkyl reagent, which in turn undergoes transmetalation to the more electronegative Fe(HMDS)2 fragment. Treatment of 5 with 1 molar equiv of methyl triflate (MeOTf) led to the isolation and structural elucidation of the neutral abnormal NHC (aNHC) tricoordinate iron complex [CH3C{[N(2,6-iPr2C6H3)]2CHCFe(HMDS)2}] (6) with the subsequent elimination of NaOTf, disclosing the selectivity of complex 5 to react with this electrophile via its C2 position, leaving its Fe-C4 and Fe-N bonds intact. The magnetic susceptibility properties of compounds 1-6 have been examined. This study revealed a drastic change of magnetic susceptibility in replacing a pure σ donor from an idealized trigonal coordination environment by an NHC π donating character

    Structural and magnetic diversity in alkali-metal manganate chemistry: evaluating donor and alkali-metal effects in co-complexation processes

    Get PDF
    By exploring co-complexation reactions between the manganese alkyl Mn(CH2SiMe3)2 and the heavier alkalimetal alkyls M(CH2SiMe3) (M=Na, K) in a benzene/hexane solvent mixture and in some cases adding Lewis donors (bidentate TMEDA, 1,4-dioxane, and 1,4-diazabicyclo[2,2,2] octane (DABCO)) has produced a new family of alkali-metal tris(alkyl) manganates. The influences that the alkali metal and the donor solvent impose on the structures and magnetic properties of these ates have been assessed by a combination of X-ray, SQUID magnetization measurements, and EPR spectroscopy. These studies uncover a diverse structural chemistry ranging from discrete monomers [(TMEDA) 2MMn(CH2SiMe3)3] (M=Na, 3; M=K, 4) to dimers [{KMn- (CH2SiMe3)3·C6H6}2] (2) and [{NaMn(CH2SiMe3)3}2(dioxane)7] (5); and to more complex supramolecular networks [{NaMn(CH2SiMe3)3}1] (1) and [{Na2Mn2(CH2SiMe3)6- (DABCO)2}1] (7)). Interestingly, the identity of the alkali metal exerts a significant effect in the reactions of 1 and 2 with 1,4-dioxane, as 1 produces coordination adduct 5, while 2 forms heteroleptic [{(dioxane)6K2Mn2(CH2SiMe3)4(O(CH2)2- OCH=CH2)2}1] (6) containing two alkoxide-vinyl anions resulting from a-metalation and ring opening of dioxane. Compounds 6 and 7, containing two spin carriers, exhibit antiferromagnetic coupling of their S=5/2 moments with varying intensity depending on the nature of the exchange pathways

    Accessing sodium ferrate complexes containing neutral and anionic N-heterocyclic carbene ligands: structural, synthetic, and magnetic insights

    Get PDF
    This study reports the synthesis and single-crystal X-ray crystallographic, NMR spectroscopic, and magnetic characterization of a series of sodium ferrates using bis(amide) Fe(HMDS)2 as a precursor (HMDS = 1,1,1,3,3,3- hexamethyldisilazide). Reaction with sodium reagents NaHMDS and NaCH2SiMe3 in hexane afforded donor-solvent-free sodium ferrates [{NaFe(HMDS)3}∞] (1) and [{NaFe(HMDS)2(CH2SiMe3)}∞] (2), respectively, which exhibit contacted ion pair structures, giving rise to new polymeric chain arrangements made up of a combination of inter- and intramolecular Na··· Me(HMDS) electrostatic interactions. Addition of the unsaturated NHC IPr (IPr = 1,3-bis(2,6-diisopropylphenyl)imidazol-2- ylidene) to 1 and 2 caused deaggregation of their polymeric structures to form discrete NHC-stabilized solvent-separated ion pairs [Na(IPr)2]+[Fe(HMDS)3]− (3) and [(THF)3·NaIPr]+[Fe(HMDS)2CH2SiMe3]− (4), where in both cases, the NHC ligand coordinates preferentially to Na. In contrast, when IPr is sequentially reacted with the single-metal reagents NaCH2SiMe3 and Fe(HMDS)2, the novel heteroleptic ferrate (THF)3Na[:C{[N(2,6-iPr2C6H3)]2CHCFe(HMDS)2}] (5) is obtained. This contains an anionic NHC ligand acting as an unsymmetrical bridge between the two metals, coordinating through its abnormal C4 position to Fe and its normal C2 position to Na. The formation of 5 can be described as an indirect ferration process where IPr is first metalated at the C4 position by the polar sodium alkyl reagent, which in turn undergoes transmetalation to the more electronegative Fe(HMDS)2 fragment. Treatment of 5 with 1 molar equiv of methyl triflate (MeOTf) led to the isolation and structural elucidation of the neutral abnormal NHC (aNHC) tricoordinate iron complex [CH3C{[N(2,6-iPr2C6H3)]2CHCFe- (HMDS)2}] (6) with the subsequent elimination of NaOTf, disclosing the selectivity of complex 5 to react with this electrophile via its C2 position, leaving its Fe−C4 and Fe−N bonds intact. The magnetic susceptibility properties of compounds 1−6 have been examined. This study revealed a drastic change of magnetic susceptibility in replacing a pure σ donor from an idealized trigonal coordination environment by an NHC π donating character

    Towards dipyrrins:oxidation and metalation of acyclic and macrocyclic Schiff-base dipyrromethanes

    Get PDF
    Oxidation of acyclic Schiff-base dipyrromethanes cleanly results in dipyrrins, whereas the macrocyclic ‘Pacman’ analogues either decompose or form new dinuclear copper(ii) complexes that are inert to ligand oxidation.</p

    Homo- and heteroleptic alkoxycarbene f-element complexes and their reactivity towards acidic N-H and C-H bonds

    Get PDF
    The reactivity of a series of organometallic rare earth and actinide complexes with hemilabile NHC-ligands towards substrates with acidic C–H and N–H bonds is described. The synthesis, characterisation and X-ray structures of the new heteroleptic mono- and bis(NHC) cyclopentadienyl complexes LnCp2(L) 1 (Ln = Sc, Y, Ce; L = alkoxy-tethered carbene [OCMe2CH2(1-C{NCHCHNiPr})]), LnCp(L)2 (Ln = Y) 2, and the homoleptic tetrakis(NHC) complex Th(L)44 are described. The reactivity of these complexes, and of the homoleptic complexes Ln(L)3 (Ln = Sc 3, Ce), with E–H substrates is described, where EH = pyrrole C4H4NH, indole C8H6NH, diphenylacetone Ph2CC(O)Me, terminal alkynes RC[triple bond, length as m-dash]CH (R = Me3Si, Ph), and cyclopentadiene C5H6. Complex 1-Y heterolytically cleaves and adds pyrrole and indole N–H across the metal carbene bond, whereas 1-Ce does not, although 3 and 4 form H-bonded adducts. Complexes 1-Y and 1-Sc form adducts with CpH without cleaving the acidic C–H bond, 1-Ce cleaves the Cp–H bond, but 2 reacts to form the very rare H+–[C5H5]−–H+ motif. Complex 1-Ce cleaves alkyne C–H bonds but the products rearrange upon formation, while complex 1-Y cleaves the C–H bond in diphenylacetone forming a product which rearranges to the Y–O bonded enolate product

    Zwischen Koordinationsverbindungen und Clustern

    No full text
    Die vorliegende Dissertation befasst sich mit der Synthese und Charakterisierung von Übergangsmetallkomplexen niedervalenter Aluminium- und Galliumorganyle. Der Schwerpunkt dieser Arbeit lag nicht nur auf der Erschließung neuer Synthesewege für homound heteroleptische ECp* Komplexe (E = Al, Ga), sondern vielmehr auf der Folgechemie der sich daraus ergebenen Produkte. Im besonderen Fokus lagen dabei die einzigartigen Eigenschaften der Cp* Schutzgruppen, die zur Stabilisierung von niedervalenten Gruppe 13 Verbindungen notwendig sind und die sich unter geeigneten Bedingungen entfernen ließen. Im Zuge dieser Studien gelang es, eine neue Stoffklasse von hochkoordinierten Übergangsmetallkomplexen mit ungewöhnlichen ZnI^{I}R Liganden zu erschließen, die die molekulare Koordinations- und Clusterchemie mit der intermetallischen Festkörper-Materialchemie auf eine neue Art verbindet

    Accessing low denticity coordination modes of a high denticity tripodal ligand to complete its coordinative repertoire

    No full text
    New coordination complexes of the neutral tripodal tetraamine Me6TREN with tBu(3)Ga or tBu(2)Zn have been synthesised and studied with their molecular structures revealing, for the first time, coordination to metal centres via an eta(1) or eta(2) mode, adding to previously reported eta(3) and eta(4) ligated examples

    Structural and magnetic diversity in alkali-metal manganate chemistry: evaluating donor and alkali-metal effects in co-complexation processes

    No full text
    By exploring co-complexation reactions between the manganese alkyl Mn(CH2SiMe3)2 and the heavier alkalimetal alkyls M(CH2SiMe3) (M=Na, K) in a benzene/hexane solvent mixture and in some cases adding Lewis donors (bidentate TMEDA, 1,4-dioxane, and 1,4-diazabicyclo[2,2,2] octane (DABCO)) has produced a new family of alkali-metal tris(alkyl) manganates. The influences that the alkali metal and the donor solvent impose on the structures and magnetic properties of these ates have been assessed by a combination of X-ray, SQUID magnetization measurements, and EPR spectroscopy. These studies uncover a diverse structural chemistry ranging from discrete monomers [(TMEDA) 2MMn(CH2SiMe3)3] (M=Na, 3; M=K, 4) to dimers [{KMn- (CH2SiMe3)3·C6H6}2] (2) and [{NaMn(CH2SiMe3)3}2(dioxane)7] (5); and to more complex supramolecular networks [{NaMn(CH2SiMe3)3}1] (1) and [{Na2Mn2(CH2SiMe3)6- (DABCO)2}1] (7)). Interestingly, the identity of the alkali metal exerts a significant effect in the reactions of 1 and 2 with 1,4-dioxane, as 1 produces coordination adduct 5, while 2 forms heteroleptic [{(dioxane)6K2Mn2(CH2SiMe3)4(O(CH2)2- OCH=CH2)2}1] (6) containing two alkoxide-vinyl anions resulting from a-metalation and ring opening of dioxane. Compounds 6 and 7, containing two spin carriers, exhibit antiferromagnetic coupling of their S=5/2 moments with varying intensity depending on the nature of the exchange pathways
    corecore