259 research outputs found

    COMMUNAL STARLING ROOSTS: IMPLICATIONS FOR CONTROL

    Get PDF
    Roosting behavior is common to most avian pests of agriculture. Movements from highly aggregated distributions in roosts to highly dispersed distributions on foraging grounds determine pattern and severity of avian pest problems. This research seeks an understanding of how roosting behavior influences the dispersion of avian agricultural pests and the damage they cause. My focus is on why birds form communal roosts and how communal roosting influences the selection of foraging sites. I document patterns of roosting behavior in European starlings (Sturnus vulgaris) through population level studies, followed by analysis of individual behavior using radio telemetry. Starlings maintain long-term fidelity (up to 130 days) to the same diurnal activity center (DAC), while using a variety of roosting sites at night. DACs tend to be at the center of the distribution of roosting sites used by individual birds. These and other results contradict expectations based on the most widely held explanations for roosting behavior and have led us to a new interpretation based on an association between large roosts and high-quality feeding sites (e.g., agricultural fields). Examination of previous attempts to manage avian pest problems in light of these new findings helps explain some earlier successes and failures, and may also promote development of new more efficient approaches to avian pest problems

    The Georgia and New York State Programs for Assessing and Developing Sign Communication Skills of Rehabilitation Personnel

    Get PDF
    Effective communication between vocational rehabilitation (VR) personnel and their clients is critical to the rehabilitation process. This paper stresses (a) the importance of VR personnel and clients sharing the opportunity and challenge for establishing effective communication, and (b) the importance of an integrated approach to sign communication skills assessment and development/learning opportunities for VR personnel. The Georgia and New York State VR programs for assessing and developing the sign communication skills of VR personnel are described, and an overview of the sign communication assessment instrument used by both programs, the Sign Communication Proficiency Interview (SCPI), is provided

    Repeated Restraint Stress Exposure During Early Withdrawal Accelerates Incubation of Cue-Induced Cocaine Craving

    Get PDF
    A major challenge for treating cocaine addiction is the propensity for abstinent users to relapse. Two important triggers for relapse are cues associated with prior drug use and stressful life events. To study their interaction in promoting relapse during abstinence, we used the incubation model of craving and relapse in which cue-induced drug seeking progressively intensifies (\u27incubates\u27) during withdrawal from extended-access cocaine self-administration. We tested rats for cue-induced cocaine seeking on withdrawal day (WD) 1. Rats were then subjected to repeated restraint stress or control conditions (seven sessions held between WD6 and WD14). All rats were tested again for cue-induced cocaine seeking on WD15, 1 day after the last stress or control session. Although controls showed a time-dependent increase in cue-induced cocaine seeking (incubation), rats exposed to repeated stress in early withdrawal exhibited a more robust increase in seeking behavior between WD1 and WD15. In separate stressed and control rats,equivalent cocaine seeking was observed on WD48. These results indicate that repeated stress in early withdrawal accelerates incubation of cocaine craving, although craving plateaus at the same level were observed in controls. However, 1 month after the WD48 test, rats subjected to repeated stress in early withdrawal showed enhanced cue-induced cocaine seeking following acute (24 hours) food deprivation stress. Together, these data indicate that chronic stress exposure enhances the initial rate of incubation of craving during early withdrawal, resulting in increased vulnerability to cue-induced relapse during this period, and may lead to a persistent increase in vulnerability to the relapse-promoting effects of stress

    Chronic Stress Prevents Cortico-Accumbens Cue Encoding and Alters Conditioned Approach

    Get PDF
    Chronic stress impairs the function of multiple brain regions and causes severe hedonic and motivational deficits. One brain region known to be susceptible to these effects is the PFC. Neurons in this region, specifically neuronal projections from the prelimbic region (PL) to the nucleus accumbens core (NAcC), have a significant role in promoting motivated approach. However, little is known about how activity in this pathway changes during associative learning to encode cues that promote approach. Less is known about how activity in this pathway may be altered by stress. In this study, an intersectional fiber photometry approach was used in male Sprague Dawley rats engaged in a Pavlovian autoshaping design to characterize the involvement of the PL-NAcC pathway in the typical acquisition of learned approach (directed at both the predictive cue and the goal), and its potential alteration by stress. Specifically, the hypothesis that neural activity in PL-NAcC would encode a Pavlovian approach cue and that prior exposure to chronic stress would disrupt both the nature of conditioned approach and the encoding of a cue that promotes approach was tested. Results of the study demonstrated that the rapid acquisition of conditioned approach was associated with cue-induced PL-NAcC activity. Prior stress both reduced cue-directed behavior and impaired the associated cortical activity. These findings demonstrate that prior stress diminishes the task-related activity of a brain pathway that regulates approach behavior. In addition, the results support the interpretation that stress disrupts reward processing by altering the incentive value of associated cues

    The 2010 Maule, Chile earthquake: Downdip rupture limit revealed by space geodesy

    Get PDF
    Radar interferometry from the ALOS satellite captured the coseismic ground deformation associated with the 2010 Mw 8.8 Maule, Chile earthquake. The ALOS interferograms reveal a sharp transition in fringe pattern at ~150 km from the trench axis that is diagnostic of the downdip rupture limit of the Maule earthquake. An elastic dislocation model based on ascending and descending ALOS interferograms and 13 near-field 3-component GPS measurements reveals that the coseismic slip decreases more or less linearly from a maximum of 17 m (along-strike average of 6.5 m) at 18 km depth to near zero at 43–48 km depth, quantitatively indicating the downdip limit of the seismogenic zone. The depth at which slip drops to near zero appears to be at the intersection of the subducting plate with the continental Moho. Our model also suggests that the depth where coseismic slip vanishes is nearly uniform along the strike direction for a rupture length of ~600 km. The average coseismic slip vector and the interseismic velocity vector are not parallel, which can be interpreted as a deficit in strike-slip moment release

    Tales of the venerable Honolulu tide gauge

    Get PDF
    Author Posting. © American Meteorological Society, 2006. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 36 (2006): 967-996, doi:10.1175/JPO2876.1.Surface expressions of internal tides constitute a significant component of the total recorded tide. The internal component is strongly modulated by the time-variable density structure, and the resulting perturbation of the recorded tide gives a welcome look at twentieth-century interannual and secular variability. Time series of mean sea level hSL(t) and total recorded M2 vector aTT(t) are extracted from the Honolulu 1905–2000 and Hilo 1947–2000 (Hawaii) tide records. Internal tide parameters are derived from the intertidal continuum surrounding the M2 frequency line and from a Cartesian display of aTT(t), yielding aST = 16.6 and 22.1 cm, aIT = 1.8 and 1.0 cm for surface and internal tides at Honolulu and Hilo, respectively. The proposed model aTT(t) = aST + aIT cosθIT(t) is of a phase-modulated internal tide generated by the surface tide at some remote point and traveling to the tide gauge with velocity modulated by the underlying variable density structure. Mean sea level hSL(t) [a surrogate for the density structure and hence for θIT(t)] is coherent with aIT(t) within the decadal band 0.2–0.5 cycles per year. For both the decadal band and the century drift the recorded M2 amplitude is high when sea level is high, according to δaTT = O(0.1δhSL). The authors attribute the recorded secular increase in the Honolulu M2 amplitude from aTT = 16.1 to 16.9 cm between 1915 and 2000 to a 28° rotation of the internal tide vector in response to ocean warming
    corecore