8 research outputs found

    Development and assessment of a questionnaire for a descriptive cross – sectional study concerning parents' knowledge, attitudes and practises in antibiotic use in Greece

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Upper Respiratory Infections (URIs) are common in children. The cause is usually viral, but parents' attitude often contributes to inappropriate antibiotic prescribing, promoting antibiotic resistance. The objective is to describe the process of developing a questionnaire to assess parents' Knowledge, Attitude and Practices (KAP) concerning the role of antibiotics when children suffer from URIs, as well as to evaluate the response rates, the completeness and the reliability (Cronbach) of the questionnaires. Finally, to note any limitations of the study.</p> <p>Methods</p> <p>Literature review, along with pre – testing yielded a questionnaire designed to assess the parents' KAP – level. A postal survey was set, in a national sample of 200 schools stratified by geographical region. The participants consist of a multistage geographical cluster sample of 8000 parents. The influence of demographic characteristics (i.e. sex, age, education) was analyzed. Cronbach index test and factor analysis were used to assess the reliability of the questionnaire.</p> <p>Results</p> <p>The response rate of the parents was 69%. Islands presented the lowest response rate while in Northern Greece the response rate was the highest. Sixty – eight point nine percent of the sample returned questionnaires fully completed, while 91.5% completed 95% of the questions. Three questions out of 70 were answered in a very low rate which was associated mostly with immigrant respondents. The section describing parents' attitude toward antibiotic use was not completed as much as the sections of knowledge or practices. The questions were factor analyzed and 10 out of the 21 extracted factors were finally evaluated, reducing the number of independent variables to 46. The reliability of the questionnaire was 0.55. However, only items that increased the Cronbach when added were eventually included in the final scales raising the internal consistency to 0.68. Limitations of the study, such as the vocabulary and form of the questionnaire and the idiocycrancy of the respondents, emerged during the analysis.</p> <p>Conclusion</p> <p>The response rate and the completeness of the questionnaires were higher than expected, probably attributed to the involvement of the teachers. The study findings were satisfactory regarding the development of a reliable instrument capable to measure parents' KAP characteristics.</p

    Validation of SYTO 9/propidium iodide uptake for rapid detection of viable but noncultivable legionella pneumophila

    Get PDF
    Legionella pneumophila is an ubiquitous environmental microorganism that can cause Legionnaires' disease or Pontiac fever. As a waterborne pathogen, it has been found to be resistant to chlorine disinfection and survive in drinking water systems, leading to potential outbreaks of waterborne disease. In this work, the effect of different concentrations of free chlorine was studied (0.2, 0.7, and 1.2 mg l(-1)), the cultivability of cells assessed by standard culture techniques (buffered charcoal yeast extract agar plates) and viability using the SYTO 9/propidium iodide fluorochrome uptake assay (LIVE/DEAD BacLight). Results demonstrate that L. pneumophila loses cultivability after exposure for 30 min to 0.7 mg l(-1) of free chlorine and in 10 min when the concentration is increased to 1.2 mg l(-1). However, the viability of the cells was only slightly affected even after 30 min exposure to the highest concentration of chlorine; good correlation was obtained between the rapid SYTO 9/propidium iodide fluorochrome uptake assay and a longer cocultivation with Acanthamoeba polyphaga assay, confirming that these cells could still recover their cultivability. These results raise new concerns about the assessment of drinking water disinfection efficiency and indicate the necessity of further developing new validated rapid methods, such as the SYTO 9/propidium iodide uptake assay, to assess viable but noncultivable L. pneumophila cells in the environment.<br/

    Genome Analysis of Streptococcus pyogenes Associated with Pharyngitis and Skin Infections

    Get PDF
    Streptococcus pyogenes is a very important human pathogen, commonly associated with skin or throat infections but can also cause life-threatening situations including sepsis, streptococcal toxic shock syndrome, and necrotizing fasciitis. Various studies involving typing and molecular characterization of S. pyogenes have been published to date; however next-generation sequencing (NGS) studies provide a comprehensive collection of an organism's genetic variation. In this study, the genomes of nine S. pyogenes isolates associated with pharyngitis and skin infection were sequenced and studied for the presence of virulence genes, resistance elements, prophages, genomic recombination, and other genomic features. Additionally, a comparative phylogenetic analysis of the isolates with global clones highlighted their possible evolutionary lineage and their site of infection. The genomes were found to also house a multitude of features including gene regulation systems, virulence factors and antimicrobial resistance mechanisms

    Mapping the human genetic architecture of COVID-19

    Get PDF
    The genetic make-up of an individual contributes to the susceptibility and response to viral infection. Although environmental, clinical and social factors have a role in the chance of exposure to SARS-CoV-2 and the severity of COVID-191,2, host genetics may also be important. Identifying host-specific genetic factors may reveal biological mechanisms of therapeutic relevance and clarify causal relationships of modifiable environmental risk factors for SARS-CoV-2 infection and outcomes. We formed a global network of researchers to investigate the role of human genetics in SARS-CoV-2 infection and COVID-19 severity. Here we describe the results of three genome-wide association meta-analyses that consist of up to 49,562 patients with COVID-19 from 46 studies across 19 countries. We report 13 genome-wide significant loci that are associated with SARS-CoV-2 infection or severe manifestations of COVID-19. Several of these loci correspond to previously documented associations to lung or autoimmune and inflammatory diseases3,4,5,6,7. They also represent potentially actionable mechanisms in response to infection. Mendelian randomization analyses support a causal role for smoking and body-mass index for severe COVID-19 although not for type II diabetes. The identification of novel host genetic factors associated with COVID-19 was made possible by the community of human genetics researchers coming together to prioritize the sharing of data, results, resources and analytical frameworks. This working model of international collaboration underscores what is possible for future genetic discoveries in emerging pandemics, or indeed for any complex human disease
    corecore