107 research outputs found

    No association between chronic musculoskeletal complaints and Val158Met polymorphism in the Catechol-O-methyltransferase gene. The HUNT study

    Get PDF
    BACKGROUND: The Catechol-O-methyltransferase (COMT) gene contains a functional polymorphism, Val158Met, that has been found to influence human pain perception. In one study fibromyalgia was less likely among those with Val/Val genotype. METHODS: In the 1995–97 Nord-Trøndelag Health Study (HUNT), the association between Val/Met polymorphism at the COMT gene and chronic musculoskeletal complaints (MSCs) was evaluated in a random sample of 3017 individuals. RESULTS: The distribution of the COMT Val158Met genotypes and alleles were similar between controls and the twelve different chronic MSCs groups. Even when the Met/Met and Val/Met genotypes were pooled, the distribution of the Val/Val genotype and other genotypes were similar between controls and the chronic MSCs groups. CONCLUSION: In this population-based study, no significant association was found between Val/Met polymorphism at the COMT gene and chronic MSCs

    Self-assembly of highly symmetrical, ultrasmall inorganic cages directed by surfactant micelles

    Get PDF
    Nanometre-sized objects with highly symmetrical, cage-like polyhedral shapes, often with icosahedral symmetry, have recently been assembled from DNA(1-3), RNA(4) or proteins(5,6) for applications in biology and medicine. These achievements relied on advances in the development of programmable self-assembling biological materials(7-10), and on rapidly developing techniques for generating three-dimensional (3D) reconstructions from cryo-electron microscopy images of single particles, which provide high-resolution structural characterization of biological complexes(11-13). Such single-particle 3D reconstruction approaches have not yet been successfully applied to the identification of synthetic inorganic nanomaterials with highly symmetrical cage-like shapes. Here, however, using a combination of cryo-electron microscopy and single-particle 3D reconstruction, we suggest the existence of isolated ultrasmall (less than 10 nm) silica cages ('silicages') with dodecahedral structure. We propose that such highly symmetrical, self-assembled cages form through the arrangement of primary silica clusters in aqueous solutions on the surface of oppositely charged surfactant micelles. This discovery paves the way for nanoscale cages made from silica and other inorganic materials to be used as building blocks for a wide range of advanced functional-materials applications

    Automatic prediction of catalytic residues by modeling residue structural neighborhood

    Get PDF
    Background: Prediction of catalytic residues is a major step in characterizing the function of enzymes. In its simpler formulation, the problem can be cast into a binary classification task at the residue level, by predicting whether the residue is directly involved in the catalytic process. The task is quite hard also when structural information is available, due to the rather wide range of roles a functional residue can play and to the large imbalance between the number of catalytic and non-catalytic residues.Results: We developed an effective representation of structural information by modeling spherical regions around candidate residues, and extracting statistics on the properties of their content such as physico-chemical properties, atomic density, flexibility, presence of water molecules. We trained an SVM classifier combining our features with sequence-based information and previously developed 3D features, and compared its performance with the most recent state-of-the-art approaches on different benchmark datasets. We further analyzed the discriminant power of the information provided by the presence of heterogens in the residue neighborhood.Conclusions: Our structure-based method achieves consistent improvements on all tested datasets over both sequence-based and structure-based state-of-the-art approaches. Structural neighborhood information is shown to be responsible for such results, and predicting the presence of nearby heterogens seems to be a promising direction for further improvements.Journal ArticleResearch Support, N.I.H. Extramuralinfo:eu-repo/semantics/publishe

    Identification of Coevolving Residues and Coevolution Potentials Emphasizing Structure, Bond Formation and Catalytic Coordination in Protein Evolution

    Get PDF
    The structure and function of a protein is dependent on coordinated interactions between its residues. The selective pressures associated with a mutation at one site should therefore depend on the amino acid identity of interacting sites. Mutual information has previously been applied to multiple sequence alignments as a means of detecting coevolutionary interactions. Here, we introduce a refinement of the mutual information method that: 1) removes a significant, non-coevolutionary bias and 2) accounts for heteroscedasticity. Using a large, non-overlapping database of protein alignments, we demonstrate that predicted coevolving residue-pairs tend to lie in close physical proximity. We introduce coevolution potentials as a novel measure of the propensity for the 20 amino acids to pair amongst predicted coevolutionary interactions. Ionic, hydrogen, and disulfide bond-forming pairs exhibited the highest potentials. Finally, we demonstrate that pairs of catalytic residues have a significantly increased likelihood to be identified as coevolving. These correlations to distinct protein features verify the accuracy of our algorithm and are consistent with a model of coevolution in which selective pressures towards preserving residue interactions act to shape the mutational landscape of a protein by restricting the set of admissible neutral mutations

    A Single Acidic Residue Can Guide Binding Site Selection but Does Not Govern QacR Cationic-Drug Affinity

    Get PDF
    Structures of the multidrug-binding repressor protein QacR with monovalent and bivalent cationic drugs revealed that the carboxylate side-chains of E90 and E120 were proximal to the positively charged nitrogens of the ligands ethidium, malachite green and rhodamine 6G, and therefore may contribute to drug neutralization and binding affinity. Here, we report structural, biochemical and in vivo effects of substituting these glutamate residues. Unexpectedly, substitutions had little impact on ligand affinity or in vivo induction capabilities. Structures of QacR(E90Q) and QacR(E120Q) with ethidium or malachite green took similar global conformations that differed significantly from all previously described QacR-drug complexes but still prohibited binding to cognate DNA. Strikingly, the QacR(E90Q)-rhodamine 6G complex revealed two mutually exclusive rhodamine 6G binding sites. Despite multiple structural changes, all drug binding was essentially isoenergetic. Thus, these data strongly suggest that rather than contributing significantly to ligand binding affinity, the role of acidic residues lining the QacR multidrug-binding pocket is primarily to attract and guide cationic drugs to the “best available” positions within the pocket that elicit QacR induction

    Skeletal muscle and performance adaptations to high-intensity training in elite male soccer players: speed endurance runs versus small-sided game training.

    Get PDF
    PURPOSE: To examine the skeletal muscle and performance responses across two different exercise training modalities which are highly applied in soccer training. METHODS: Using an RCT design, 39 well-trained male soccer players were randomized into either a speed endurance training (SET; n = 21) or a small-sided game group (SSG; n = 18). Over 4 weeks, thrice weekly, SET performed 6-10 × 30-s all-out runs with 3-min recovery, while SSG completed 2 × 7-9-min small-sided games with 2-min recovery. Muscle biopsies were obtained from m. vastus lateralis pre and post intervention and were subsequently analysed for metabolic enzyme activity and muscle protein expression. Moreover, the Yo-Yo Intermittent Recovery level 2 test (Yo-Yo IR2) was performed. RESULTS: Muscle CS maximal activity increased (P < 0.05) by 18% in SET only, demonstrating larger (P < 0.05) improvement than SSG, while HAD activity increased (P < 0.05) by 24% in both groups. Na(+)-K(+) ATPase α1 subunit protein expression increased (P < 0.05) in SET and SSG (19 and 37%, respectively), while MCT4 protein expression rose (P < 0.05) by 30 and 61% in SET and SSG, respectively. SOD2 protein expression increased (P < 0.05) by 28 and 37% in SET and SSG, respectively, while GLUT-4 protein expression increased (P < 0.05) by 40% in SSG only. Finally, SET displayed 39% greater improvement (P < 0.05) in Yo-Yo IR2 performance than SSG. CONCLUSION: Speed endurance training improved muscle oxidative capacity and exercise performance more pronouncedly than small-sided game training, but comparable responses were in muscle ion transporters and antioxidative capacity in well-trained male soccer players

    Structural insight into the membrane targeting domain of the Legionella deAMPylase SidD

    Get PDF
    AMPylation, the post-translational modification with adenosine monophosphate (AMP), is catalyzed by effector proteins from a variety of pathogens. Legionella pneumophila is thus far the only known pathogen that, in addition to encoding an AMPylase (SidM/DrrA), also encodes a deAMPylase, called SidD, that reverses SidM-mediated AMPylation of the vesicle transport GTPase Rab1. DeAMPylation is catalyzed by the N-terminal phosphatase-like domain of SidD. Here, we determined the crystal structure of full length SidD including the uncharacterized C-terminal domain (CTD). A flexible loop rich in aromatic residues within the CTD was required to target SidD to model membranes in vitro and to the Golgi apparatus within mammalian cells. Deletion of the loop (??loop) or substitution of its aromatic phenylalanine residues rendered SidD cytosolic, showing that the hydrophobic loop is the primary membrane-targeting determinant of SidD. Notably, deletion of the two terminal alpha helices resulted in a CTD variant incapable of discriminating between membranes of different composition. Moreover, a L. pneumophila strain producing SidD??loop phenocopied a L. pneumophila ??sidD strain during growth in mouse macrophages and displayed prolonged co-localization of AMPylated Rab1 with LCVs, thus revealing that membrane targeting of SidD via its CTD is a critical prerequisite for its ability to catalyze Rab1 deAMPylation during L. pneumophila infection

    The Molecular Epidemiology and Evolution of Murray Valley Encephalitis Virus: Recent Emergence of Distinct Sub-lineages of the Dominant Genotype 1

    Get PDF
    © 2015 Williams et al. Background: Recent increased activity of the mosquito-borne Murray Valley encephalitis virus (MVEV) in Australia has renewed concerns regarding its potential to spread and cause disease. Methodology/Principal Findings: To better understand the genetic relationships between earlier and more recent circulating strains, patterns of virus movement, as well as the molecular basis of MVEV evolution, complete pre-membrane (prM) and Envelope (Env) genes were sequenced from sixty-six MVEV strains from different regions of the Australasian region, isolated over a sixty year period (1951–2011). Phylogenetic analyses indicated that, of the four recognized genotypes, only G1 and G2 are contemporary. G1 viruses were dominant over the sampling period and found across the known geographic range of MVEV. Two distinct sub-lineages of G1 were observed (1A and 1B). Although G1B strains have been isolated from across mainland Australia, Australian G1A strains have not been detected outside northwest Australia. Similarly, G2 is comprised of only Western Australian isolates from mosquitoes, suggesting G1B and G2 viruses have geographic or ecological restrictions. No evidence of recombination was found and a single amino acid substitution in the Env protein (S332G) was found to be under positive selection, while several others were found to be under directional evolution. Evolutionary analyses indicated that extant genotypes of MVEV began to diverge from a common ancestor approximately 200 years ago. G2 was the first genotype to diverge, followed by G3 and G4, and finally G1, from which subtypes G1A and G1B diverged between 1964 and 1994. Conclusions/Significance: The results of this study provides new insights into the genetic diversity and evolution of MVEV. The demonstration of co-circulation of all contemporary genetic lineages of MVEV in northwestern Australia, supports the contention that this region is the enzootic focus for this virus

    Analyses of genome architecture and gene expression reveal novel candidate virulence factors in the secretome of Phytophthora infestans

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Phytophthora infestans </it>is the most devastating pathogen of potato and a model organism for the oomycetes. It exhibits high evolutionary potential and rapidly adapts to host plants. The <it>P. infestans </it>genome experienced a repeat-driven expansion relative to the genomes of <it>Phytophthora sojae </it>and <it>Phytophthora ramorum </it>and shows a discontinuous distribution of gene density. Effector genes, such as members of the RXLR and Crinkler (CRN) families, localize to expanded, repeat-rich and gene-sparse regions of the genome. This distinct genomic environment is thought to contribute to genome plasticity and host adaptation.</p> <p>Results</p> <p>We used <it>in silico </it>approaches to predict and describe the repertoire of <it>P. infestans </it>secreted proteins (the secretome). We defined the "plastic secretome" as a subset of the genome that (i) encodes predicted secreted proteins, (ii) is excluded from genome segments orthologous to the <it>P. sojae </it>and <it>P. ramorum </it>genomes and (iii) is encoded by genes residing in gene sparse regions of <it>P. infestans </it>genome. Although including only ~3% <it>of P. infestans </it>genes, the plastic secretome contains ~62% of known effector genes and shows >2 fold enrichment in genes induced <it>in planta</it>. We highlight 19 plastic secretome genes induced <it>in planta </it>but distinct from previously described effectors. This list includes a trypsin-like serine protease, secreted oxidoreductases, small cysteine-rich proteins and repeat containing proteins that we propose to be novel candidate virulence factors.</p> <p>Conclusions</p> <p>This work revealed a remarkably diverse plastic secretome. It illustrates the value of combining genome architecture with comparative genomics to identify novel candidate virulence factors from pathogen genomes.</p
    corecore