Abstract

<p>Abstract</p> <p>Background</p> <p><it>Phytophthora infestans </it>is the most devastating pathogen of potato and a model organism for the oomycetes. It exhibits high evolutionary potential and rapidly adapts to host plants. The <it>P. infestans </it>genome experienced a repeat-driven expansion relative to the genomes of <it>Phytophthora sojae </it>and <it>Phytophthora ramorum </it>and shows a discontinuous distribution of gene density. Effector genes, such as members of the RXLR and Crinkler (CRN) families, localize to expanded, repeat-rich and gene-sparse regions of the genome. This distinct genomic environment is thought to contribute to genome plasticity and host adaptation.</p> <p>Results</p> <p>We used <it>in silico </it>approaches to predict and describe the repertoire of <it>P. infestans </it>secreted proteins (the secretome). We defined the "plastic secretome" as a subset of the genome that (i) encodes predicted secreted proteins, (ii) is excluded from genome segments orthologous to the <it>P. sojae </it>and <it>P. ramorum </it>genomes and (iii) is encoded by genes residing in gene sparse regions of <it>P. infestans </it>genome. Although including only ~3% <it>of P. infestans </it>genes, the plastic secretome contains ~62% of known effector genes and shows >2 fold enrichment in genes induced <it>in planta</it>. We highlight 19 plastic secretome genes induced <it>in planta </it>but distinct from previously described effectors. This list includes a trypsin-like serine protease, secreted oxidoreductases, small cysteine-rich proteins and repeat containing proteins that we propose to be novel candidate virulence factors.</p> <p>Conclusions</p> <p>This work revealed a remarkably diverse plastic secretome. It illustrates the value of combining genome architecture with comparative genomics to identify novel candidate virulence factors from pathogen genomes.</p

    Similar works