9,250 research outputs found

    Pandemic A/H1N1 2009 Influenza Virus-like Particles Elicited Higher and Broader Immune Responses than the Commercial Panenza Vaccine

    Get PDF
    Objectives: The aim was to construct 2009 pandemic A/H1N1 influenza VLPs (virus-like particles) and compare the immunogenicity and protection efficacy with the commercial Panenza vaccine in BALB/c mouse model. Methods: VLPs derived from influenza A/Hong Kong/01/2009 (H1N1) virus were constructed by Bac-to-Bac baculovirus expression system. VLPs were purified by sucrose density gradient ultracentrifugation and then characterized by Western blotting analysis and transmission electron microscopy. After single dose vaccination with 3 µg of VLPs and equal amount of Panenza vaccine, the immune responses and efficacy of protection induced by VLPs were compared with those elicited by the Panenza vaccine in 6-8 week female BALB/c mice. Key findings: VLPs could induce higher antibody titer as determined by hemagglutinin inhibition and microneutralization assay. Furthermore, we demonstrated that VLPs induced better antibody response to neuraminidase. In addition, VLP vaccinated mice had stronger cell-mediated immune response. As a result, our VLPs conferred 100% protection while the Panenza vaccine only conferred 67% protection. Conclusion: From the results, we concluded that influenza VLPs are highly immunogenic and they are promising to be developed as an alternative strategy to vaccine production in order to control the spread of influenza viruses.published_or_final_versio

    T-Bet and Eomes Regulate the Balance between the Effector/Central Memory T Cells versus Memory Stem Like T Cells

    Get PDF
    Memory T cells are composed of effector, central, and memory stem cells. Previous studies have implicated that both T-bet and Eomes are involved in the generation of effector and central memory CD8 T cells. The exact role of these transcription factors in shaping the memory T cell pool is not well understood, particularly with memory stem T cells. Here, we demonstrate that both T-bet or Eomes are required for elimination of established tumors by adoptively transferred CD8 T cells. We also examined the role of T-bet and Eomes in the generation of tumor-specific memory T cell subsets upon adoptive transfer. We showed that combined T-bet and Eomes deficiency resulted in a severe reduction in the number of effector/central memory T cells but an increase in the percentage of CD62LhighCD44low Sca-1+ T cells which were similar to the phenotype of memory stem T cells. Despite preserving large numbers of phenotypic memory stem T cells, the lack of both of T-bet and Eomes resulted in a profound defect in antitumor memory responses, suggesting T-bet and Eomes are crucial for the antitumor function of these memory T cells. Our study establishes that T-bet and Eomes cooperate to promote the phenotype of effector/central memory CD8 T cell versus that of memory stem like T cells. © 2013 Li et al

    A dynamical model reveals gene co-localizations in nucleus

    Get PDF
    Co-localization of networks of genes in the nucleus is thought to play an important role in determining gene expression patterns. Based upon experimental data, we built a dynamical model to test whether pure diffusion could account for the observed co-localization of genes within a defined subnuclear region. A simple standard Brownian motion model in two and three dimensions shows that preferential co-localization is possible for co-regulated genes without any direct interaction, and suggests the occurrence may be due to a limitation in the number of available transcription factors. Experimental data of chromatin movements demonstrates that fractional rather than standard Brownian motion is more appropriate to model gene mobilizations, and we tested our dynamical model against recent static experimental data, using a sub-diffusion process by which the genes tend to colocalize more easily. Moreover, in order to compare our model with recently obtained experimental data, we studied the association level between genes and factors, and presented data supporting the validation of this dynamic model. As further applications of our model, we applied it to test against more biological observations. We found that increasing transcription factor number, rather than factory number and nucleus size, might be the reason for decreasing gene co-localization. In the scenario of frequency-or amplitude-modulation of transcription factors, our model predicted that frequency-modulation may increase the co-localization between its targeted genes

    Phase structure of black branes in grand canonical ensemble

    Full text link
    This is a companion paper of our previous work [1] where we studied the thermodynamics and phase structure of asymptotically flat black pp-branes in a cavity in arbitrary dimensions DD in a canonical ensemble. In this work we study the thermodynamics and phase structure of the same in a grand canonical ensemble. Since the boundary data in two cases are different (for the grand canonical ensemble boundary potential is fixed instead of the charge as in canonical ensemble) the stability analysis and the phase structure in the two cases are quite different. In particular, we find that there exists an analog of one-variable analysis as in canonical ensemble, which gives the same stability condition as the rather complicated known (but generalized from black holes to the present case) two-variable analysis. When certain condition for the fixed potential is satisfied, the phase structure of charged black pp-branes is in some sense similar to that of the zero charge black pp-branes in canonical ensemble up to a certain temperature. The new feature in the present case is that above this temperature, unlike the zero-charge case, the stable brane phase no longer exists and `hot flat space' is the stable phase here. In the grand canonical ensemble there is an analog of Hawking-Page transition, even for the charged black pp-brane, as opposed to the canonical ensemble. Our study applies to non-dilatonic as well as dilatonic black pp-branes in DD space-time dimensions.Comment: 32 pages, 2 figures, various points refined, discussion expanded, references updated, typos corrected, published in JHEP 1105:091,201

    Orexinergic Input to Dopaminergic Neurons of the Human Ventral Tegmental Area

    Get PDF
    The mesolimbic reward pathway arising from dopaminergic (DA) neurons of the ventral tegmental area (VTA) has been strongly implicated in reward processing and drug abuse. In rodents, behaviors associated with this projection are profoundly influenced by an orexinergic input from the lateral hypothalamus to the VTA. Because the existence and significance of an analogous orexigenic regulatory mechanism acting in the human VTA have been elusive, here we addressed the possibility that orexinergic neurons provide direct input to DA neurons of the human VTA. Dual-label immunohistochemistry was used and orexinergic projections to the VTA and to DA neurons of the neighboring substantia nigra (SN) were analyzed comparatively in adult male humans and rats. Orexin B-immunoreactive (IR) axons apposed to tyrosine hydroxylase (TH)-IR DA and to non-DA neurons were scarce in the VTA and SN of both species. In the VTA, 15.062.8% of TH-IR perikarya in humans and 3.260.3% in rats received orexin B-IR afferent contacts. On average, 0.2460.05 and 0.0560.005 orexinergic appositions per TH-IR perikaryon were detected in humans and rats, respectively. The majority(86–88%) of randomly encountered orexinergic contacts targeted the dendritic compartment of DA neurons. Finally, DA neurons of the SN also received orexinergic innervation in both species. Based on the observation of five times heavierorexinergic input to TH-IR neurons of the human, compared with the rat, VTA, we propose that orexinergic mechanism acting in the VTA may play just as important roles in reward processing and drug abuse in humans, as already established well in rodents

    Phase transitions and critical behavior of black branes in canonical ensemble

    Full text link
    We study the thermodynamics and phase structure of asymptotically flat non-dilatonic as well as dilatonic black branes in a cavity in arbitrary dimensions (DD). We consider the canonical ensemble and so the charge inside the cavity and the temperature at the wall are fixed. We analyze the stability of the black brane equilibrium states and derive the phase structures. For the zero charge case we find an analog of Hawking-Page phase transition for these black branes in arbitrary dimensions. When the charge is non-zero, we find that below a critical value of the charge, the phase diagram has a line of first-order phase transition in a certain range of temperatures which ends up at a second order phase transition point (critical point) as the charge attains the critical value. We calculate the critical exponents at that critical point. Although our discussion is mainly concerned with the non-dilatonic branes, we show how it easily carries over to the dilatonic branes as well.Comment: 37 pages, 6 figures, the validity of using the effective action discussed, references adde

    Supermultiplexed optical imaging and barcoding with engineered polyynes

    Get PDF
    Optical multiplexing has a large impact in photonics, the life sciences and biomedicine. However, current technology is limited by a 'multiplexing ceiling' from existing optical materials. Here we engineered a class of polyyne-based materials for optical supermultiplexing. We achieved 20 distinct Raman frequencies, as 'Carbon rainbow', through rational engineering of conjugation length, bond-selective isotope doping and end-capping substitution of polyynes. With further probe functionalization, we demonstrated ten-color organelle imaging in individual living cells with high specificity, sensitivity and photostability. Moreover, we realized optical data storage and identification by combinatorial barcoding, yielding to our knowledge the largest number of distinct spectral barcodes to date. Therefore, these polyynes hold great promise in live-cell imaging and sorting as well as in high-throughput diagnostics and screening

    Inherited biotic protection in a Neotropical pioneer plant

    Get PDF
    Chelonanthus alatus is a bat-pollinated, pioneer Gentianaceae that clusters in patches where still-standing, dried-out stems are interspersed among live individuals. Flowers bear circum-floral nectaries (CFNs) that are attractive to ants, and seed dispersal is both barochorous and anemochorous. Although, in this study, live individuals never sheltered ant colonies, dried-out hollow stems - that can remain standing for 2 years - did. Workers from species nesting in dried-out stems as well as from ground-nesting species exploited the CFNs of live C. alatus individuals in the same patches during the daytime, but were absent at night (when bat pollination occurs) on 60.5% of the plants. By visiting the CFNs, the ants indirectly protect the flowers - but not the plant foliage - from herbivorous insects. We show that this protection is provided mostly by species nesting in dried-out stems, predominantly Pseudomyrmex gracilis. That dried-out stems remain standing for years and are regularly replaced results in an opportunistic, but stable association where colonies are sheltered by one generation of dead C. alatus while the live individuals nearby, belonging to the next generation, provide them with nectar; in turn, the ants protect their flowers from herbivores. We suggest that the investment in wood by C. alatus individuals permitting stillstanding, dried-out stems to shelter ant colonies constitutes an extended phenotype because foraging workers protect the flowers of live individuals in the same patch. Also, through this process these dried-out stems indirectly favor the reproduction (and so the fitness) of the next generation including both their own offspring and that of their siblings, alladding up to a potential case of inclusive fitness in plants

    Failure mechanisms of a SiC particles 2024Al composite under dynamic loading

    Get PDF
    Dynamic mechanical response of a 20 vol% silicon carbide particles (SiCp) reinforced 2024 Al composite prepared by powder metallurgy techniques were studied with a split Hopkinson bar. The fracture mechanisms and the deformation microstructure were examined with Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). The present results indicate that the composite has a strong SiC-Al interfacial bonding; failure of the material is mainly caused by fracture of SiC particles and tearing failure of the SiC-Al interface. This failure by interface tearing with adhesion of an aluminium layer on SiC particles on the fracture surfaces has not been reported in SiC particle-reinforced aluminium composites. High-resolution transmission electron microscopy studies showed that many of the SiC-Al interfaces have coincident site lattice structures, which are considered to make a significant contribution to the strong interfacial bonding

    Single Step Solution Processed GaAs Thin Films from GaMe 3 and BuAsH 2 under Ambient Pressure

    Get PDF
    This article reports on the possibility of low-cost GaAs formed under ambient pressure via a single step solution processed route from only readily available precursors, tBuAsH2 and GaMe3. The thin films of GaAs on glass substrates were found to have good crystallinity with crystallites as large as 150 nm and low contamination with experimental results matching well with theoretical density of states calculations. These results open up a route to efficient and cost-effective scale up of GaAs thin films with high material properties for widespread industrial use. Confirmation of film quality was determined using XRD, Raman, EDX mapping, SEM, HRTEM, XPS, and SIMS
    corecore