381 research outputs found

    Long wavelength optical coherence tomography for painted objects

    Get PDF
    Optical Coherence Tomography has been successfully applied to the imaging of painted objects in recent years. However, a significant limitation is the low penetration depth of OCT in paint because of the high opacity of paint due to either scattering or absorption. It has been shown that the optimum spectral window for OCT imaging of paint layers is around 2.2μm in wavelength. In this paper, we demonstrate a 1950nm OCT for imaging painted objects using a superfluorescent fiber source at low power

    High resolution fourier domain optical coherence tomography at 2 microns for painted objects

    Get PDF
    Optical Coherence Tomography has been successfully applied to the non-invasive imaging of subsurface microstructure of a variety of materials from biological tissues to painted objects of art. One of the limitations of the technique is the low depth of penetration due to the strong scattering and absorption in the material. Previous studies found that for paint materials, the optimum window for large depth of penetration is around 2.2 microns. This is also true for many other materials with low water content. We have previously demonstrated OCT systems in this wavelength regime for imaging with improved depth of penetration. In this paper, we present an improved 2 micron high resolution Fourier domain OCT system using a broadband supercontinuum source. The system achieved a depth resolution of 9 microns in air (or 6 microns in paint or any polymer)

    High resolution Fourier domain optical coherence tomography in the 2 μm wavelength range using a broadband supercontinuum source

    Get PDF
    A 220 nm bandwidth supercontinuum source in the two-micron wavelength range has been developed for use in a Fourier domain optical coherence tomography (FDOCT) system. This long wavelength source serves to enhance probing depth in highly scattering material with low water content. We present results confirming improved penetration depth in high opacity paint samples while achieving the high axial resolution needed to resolve individual paint layers. This is the first FDOCT developed in the 2 μm wavelength regime that allows fast, efficient capturing of 3D image cubes at a high axial resolution of 13 μm in air (or 9 μm in paint)

    Multi-scale perturbation theory. Part I. Methodology and leading-order bispectrum corrections in the matter-dominated era

    Get PDF
    Two-parameter perturbation theory is a scheme tailor-made to consistently include nonlinear density contrasts on small scales (<100 Mpc), whilst retaining a traditional approach to cosmological perturbations in the long-wavelength universe. In this paper we study the solutions that arise from this theory in a spatially-flat dust-filled cosmology, and what these imply for the bispectrum of matter. This is achieved by using Newtonian perturbation theory to model the gravitational fields of nonlinear structures in the quasi-linear regime, and then using the resulting solutions as source terms for the cosmological equations. We find that our approach results in the leading-order part of the cosmological gravitational potentials being identical to those that result from standard cosmological perturbation theory at second-order, while the dark matter bispectrum itself yields some differences on Hubble scales. This demonstrates that our approach is sufficient to capture most leading-order relativistic effects, but within a framework that is far easier to generalize. We expect this latter property to be particularly useful for calculating leading-order relativistic corrections to the matter power spectrum, as well as for deriving predictions for relativistic effects in alternative theories of gravity

    Multi-Scale Perturbation Theory II: Solutions and Leading-Order Bispectrum in the ΛΛCDM Universe

    Get PDF
    Two-parameter perturbation theory (2PPT) is a framework designed to include the relativistic gravitational effects of small-scale nonlinear structures on the large-scale properties of the Universe. In this paper we use the 2PPT framework to calculate and study the bispectrum of matter in a spatially-flat Λ\LambdaCDM cosmology. This is achieved by deploying Newtonian perturbation theory to model the gravitational fields of quasi-nonlinear structures, and then subsequently using them as source terms for the large-scale cosmological perturbations. We find that our approach reproduces some of the expected relativistic effects from second-order cosmological perturbation theory, but not all. This work therefore provides a first step in deploying a formalism that can simultaneously model the weak gravitational fields of both linear and nonlinear structures in a realistic model of the Universe

    Detection and quantitation of copy number variation in the voltage-gated sodium channel gene of the mosquito Culex quinquefasciatus

    Get PDF
    Insecticide resistance is typically associated with alterations to the insecticidal target-site or with gene expression variation at loci involved in insecticide detoxification. In some species copy number variation (CNV) of target site loci (e.g. the Ace-1 target site of carbamate insecticides) or detoxification genes has been implicated in the resistance phenotype. We show that field-collected Ugandan Culex quinquefasciatus display CNV for the voltage-gated sodium channel gene (Vgsc), target-site of pyrethroid and organochlorine insecticides. In order to develop field-applicable diagnostics for Vgsc CN, and as a prelude to investigating the possible association of CN with insecticide resistance, three assays were compared for their accuracy in CN estimation in this species. The gold standard method is droplet digital PCR (ddPCR), however, the hardware is prohibitively expensive for widespread utility. Here, ddPCR was compared to quantitative PCR (qPCR) and pyrosequencing. Across all platforms, CNV was detected in ≈10% of mosquitoes, corresponding to three or four copies (per diploid genome). ddPCR and qPCR-Std-curve yielded similar predictions for Vgsc CN, indicating that the qPCR protocol developed here can be applied as a diagnostic assay, facilitating monitoring of Vgsc CN in wild populations and the elucidation of association between the Vgsc CN and insecticide resistance

    Candidate-gene based GWAS identifies reproducible DNA markers for metabolic pyrethroid resistance from standing genetic variation in East African Anopheles gambiae.

    Get PDF
    Metabolic resistance to pyrethroid insecticides is widespread in Anopheles mosquitoes and is a major threat to malaria control. DNA markers would aid predictive monitoring of resistance, but few mutations have been discovered outside of insecticide-targeted genes. Isofemale family pools from a wild Ugandan Anopheles gambiae population, from an area where operational pyrethroid failure is suspected, were genotyped using a candidate-gene enriched SNP array. Resistance-associated SNPs were detected in three genes from detoxification superfamilies, in addition to the insecticide target site (the Voltage Gated Sodium Channel gene, Vgsc). The putative associations were confirmed for two of the marker SNPs, in the P450 Cyp4j5 and the esterase Coeae1d by reproducible association with pyrethroid resistance in multiple field collections from Uganda and Kenya, and together with the Vgsc-1014S (kdr) mutation these SNPs explained around 20% of variation in resistance. Moreover, the >20 Mb 2La inversion also showed evidence of association with resistance as did environmental humidity. Sequencing of Cyp4j5 and Coeae1d detected no resistance-linked loss of diversity, suggesting selection from standing variation. Our study provides novel, regionally-validated DNA assays for resistance to the most important insecticide class, and establishes both 2La karyotype variation and humidity as common factors impacting the resistance phenotype

    Genomic Footprints of Selective Sweeps from Metabolic Resistance to Pyrethroids in African Malaria Vectors Are Driven by Scale up of Insecticide-Based Vector Control

    Get PDF
    Insecticide resistance in mosquito populations threatens recent successes in malaria prevention. Elucidating patterns of genetic structure in malaria vectors to predict the speed and direction of the spread of resistance is essential to get ahead of the `resistance curve' and to avert a public health catastrophe. Here, applying a combination of microsatellite analysis, whole genome sequencing and targeted sequencing of a resistance locus, we elucidated the continent-wide population structure of a major African malaria vector, Anopheles funestus. We identified a major selective sweep in a genomic region controlling cytochrome P450-based metabolic resistance conferring high resistance to pyrethroids. This selective sweep occurred since 2002, likely as a direct consequence of scaled up vector control as revealed by whole genome and fine-scale sequencing of pre- and post-intervention populations. Fine-scaled analysis of the pyrethroid resistance locus revealed that a resistanceassociated allele of the cytochrome P450 monooxygenase CYP6P9a has swept through southern Africa to near fixation, in contrast to high polymorphism levels before interventions, conferring high levels of pyrethroid resistance linked to control failure. Population structure analysis revealed a barrier to gene flow between southern Africa and other areas, which may prevent or slow the spread of the southern mechanism of pyrethroid resistance to other regions. By identifying a genetic signature of pyrethroid-based interventions, we have demonstrated the intense selective pressure that control interventions exert on mosquito populations. If this level of selection and spread of resistance continues unabated, our ability to control malaria with current interventions will be compromised

    POSIWID and determinism in design for behaviour change

    Get PDF
    Copyright @ 2012 Social Services Research GroupWhen designing to influence behaviour for social or environmental benefit, does designers' intent matter? Or are the effects on behaviour more important, regardless of the intent involved? This brief paper explores -- in the context of design for behaviour change -- some treatments of design, intentionality, purpose and responsibility from a variety of fields, including Stafford Beer's "The purpose of a system is what it does" and Maurice Broady's perspective on determinism. The paper attempts to extract useful implications for designers working on behaviour-related problems, in terms of analytical or reflective questions to ask during the design process
    corecore