238 research outputs found
Morphological characterization of two species of Abelmoschus: Abelmoschus esculentus and Abelmoschus caillei
Abelmoschus esculentus (L.) Moench. (okra) and Abelmoschus caillei (A.Chev.) Stevels (West African okra) are commonly grown as vegetable crops in southern Nigeria. This study examined the intra- and interspecific relationships between the two species, using seven accessions of A. esculentus and eight of A. caillei. Twelve quantitative and 12 qualitative characters were pooled for the analyses. Leaf characters were measured at the inception of the third leaf, floral characters at inception of flowering. Growth pattern was indeterminate for A. esculentus and determinate for A. caillei; stem was weak and procumbent for A. esculentus, stiff and erect for A. caillei; internode length was short/moderate in A. esculentus, long in A. caillei. Epicalyses terminated at the onset of the fruit in A. esculentus, but were hard and persistent in A. caillei; fruit shape was fusiform in A. esculentus, ovoid/oblong in A. caillei, erect in A. esculentus, pendulous in A. caillei. Flowering period was longer in A. caillei (>43 days) than in A. esculentus (maximum of 43 days). A. caillei produced more fruits (77%) than A. esculentus (44%); taller plants were recorded for A. caillei (34.50–52.20 cm) than for A. esculentus (21.30–30.10 cm). Greater intraspecific variation was observed in A. esculentus (five clusters) than in A. caillei (three clusters). The species showed closer interspecific relationship at higher Euclidean distance
Human spermatogenic failure purges deleterious mutation load from the autosomes and both sex chromosomes, including the gene DMRT1
Gonadal failure, along with early pregnancy loss and perinatal death, may be an important filter that limits the propagation
of harmful mutations in the human population. We hypothesized that men with spermatogenic impairment, a disease with
unknown genetic architecture and a common cause of male infertility, are enriched for rare deleterious mutations
compared to men with normal spermatogenesis. After assaying genomewide SNPs and CNVs in 323 Caucasian men with
idiopathic spermatogenic impairment and more than 1,100 controls, we estimate that each rare autosomal deletion
detected in our study multiplicatively changes a man’s risk of disease by 10% (OR 1.10 [1.04–1.16], p,261023), rare X-linked
CNVs by 29%, (OR 1.29 [1.11–1.50], p,161023), and rare Y-linked duplications by 88% (OR 1.88 [1.13–3.13], p,0.03). By
contrasting the properties of our case-specific CNVs with those of CNV callsets from cases of autism, schizophrenia, bipolar
disorder, and intellectual disability, we propose that the CNV burden in spermatogenic impairment is distinct from the
burden of large, dominant mutations described for neurodevelopmental disorders. We identified two patients with
deletions of DMRT1, a gene on chromosome 9p24.3 orthologous to the putative sex determination locus of the avian ZW
chromosome system. In an independent sample of Han Chinese men, we identified 3 more DMRT1 deletions in 979 cases of
idiopathic azoospermia and none in 1,734 controls, and found none in an additional 4,519 controls from public databases.
The combined results indicate that DMRT1 loss-of-function mutations are a risk factor and potential genetic cause of human
spermatogenic failure (frequency of 0.38% in 1306 cases and 0% in 7,754 controls, p = 6.261025). Our study identifies other
recurrent CNVs as potential causes of idiopathic azoospermia and generates hypotheses for directing future studies on the
genetic basis of male infertility and IVF outcomes.This work was partially funded by the Portuguese Foundation for Science and Technology FCT/MCTES (PIDDAC) and co-financed by European funds (FEDER) through the COMPETE program, research grant PTDC/SAU-GMG/101229/2008. IPATIMUP is an Associate Laboratory of the Portuguese Ministry of Science, Technology, and Higher Education and is partially supported by FCT. AML is the recipient of a postdoctoral fellowship from FCT (SFRH/BPD/73366/2010). CO is supported by a grant from the United States National Institutes of Health (R01 HD21244), JDS is supported by Damon Runyon Clinical Investigator Award, Alex's Lemonade Stand Foundation Epidemiology Award, and the Eunice Kennedy Shriver Children's Health Research Career Development Award NICHD 5K12HD001410. Support for humans studies and specimens were provided by the NIH/NIDDK George M. O'Brien Center for Kidney Disease Kidney Translational Research Core (P30DK079333) grant to Washington University. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript
Constraints on Dark Matter Annihilation in Clusters of Galaxies with the Fermi Large Area Telescope
Nearby clusters and groups of galaxies are potentially bright sources of
high-energy gamma-ray emission resulting from the pair-annihilation of dark
matter particles. However, no significant gamma-ray emission has been detected
so far from clusters in the first 11 months of observations with the Fermi
Large Area Telescope. We interpret this non-detection in terms of constraints
on dark matter particle properties. In particular for leptonic annihilation
final states and particle masses greater than ~200 GeV, gamma-ray emission from
inverse Compton scattering of CMB photons is expected to dominate the dark
matter annihilation signal from clusters, and our gamma-ray limits exclude
large regions of the parameter space that would give a good fit to the recent
anomalous Pamela and Fermi-LAT electron-positron measurements. We also present
constraints on the annihilation of more standard dark matter candidates, such
as the lightest neutralino of supersymmetric models. The constraints are
particularly strong when including the fact that clusters are known to contain
substructure at least on galaxy scales, increasing the expected gamma-ray flux
by a factor of ~5 over a smooth-halo assumption. We also explore the effect of
uncertainties in cluster dark matter density profiles, finding a systematic
uncertainty in the constraints of roughly a factor of two, but similar overall
conclusions. In this work, we focus on deriving limits on dark matter models; a
more general consideration of the Fermi-LAT data on clusters and clusters as
gamma-ray sources is forthcoming.Comment: accepted to JCAP, Corresponding authors: T.E. Jeltema and S. Profumo,
minor revisions to be consistent with accepted versio
Recommended from our members
Isotopic Studies of Contaminant Transport at the Hanford Site,WA
Processes of fluid flow and chemical transport through thevadose zone can be characterized through the isotopic systematics ofnatural soils, minerals, pore fluids and groundwater. In thiscontribution, we first review our research using measured isotopicvariations, due both to natural and site related processes, of theelements H, O, N, Sr and U, to study the interconnection between vadosezone and groundwater contamination at the Hanford Site in south-centralWashington. We follow this brief review with a presentation of new datapertaining to vadose zone and groundwater contamination in the WMAT-TX-TY vicinity. Uranium (U) isotopic data for the C3832 core (WMA TX)indicates the involvement of processed natural U fuel, and links theobserved U contamination to the nearby single shelled tank TX-104. Thedata also precludes contamination from an early 1970 s TX-107 leak. Inthe case of the C4104 core (WMA T), the U isotopic data indicates amixture of processed natural and enriched U fuels consistent with themajor leak from T-106 in 1973. Uranium and Strontium isotopic data forthe cores also provides direct evidence for chemical interaction betweenhigh-pH waste fluid and sediment. Isotopic data for groundwater nitratecontamination in the vicinity of WMA-T strongly suggests high-level tankwaste (most likely from T-106) as the source of very high 99Tcconcentrations recently observed at the NE corner of WMAT
Interaction of inflammatory cytokines and erythropoeitin in iron metabolism and erythropoiesis in anaemia of chronic disease
In chronic inflammatory conditions increased endogenous release of specific cytokines (TNFα, IL-1, IL-6, IFNγ and others) is presumed. It has been shown that those of monocyte lineage play a key role in cytokine expression and synthesis. This may be associated with changes in iron metabolism and impaired erythropoiesis and may lead to development of anaemia in patients with rheumatoid arthritis. Firstly, increased synthesis of acute phase proteins, like ferritin, during chronic inflammation is proposed as the way by which the toxic effect of iron and thereby the synthesis of free oxy-radicals causing the damage on the affected joints, may be reduced. This is associated with a shift of iron towards the mononuclear phagocyte system which may participate in the development of anaemia of chronic disease. Secondly, an inhibitory action of inflammatory cytokines (TNFα, IL-1), on proliferation and differentiation of erythroid progenitors as well as on synthesis of erythropoietin has been shown, thereby also contributing to anaemia. Finally, chronic inflammation causes multiple, complex disturbances in the delicate physiologic equilibrium of interaction between cytokines and cells (erythroid progenitors, cells of mononuclear phagocyte system and erythropoietin producing cells) leading to development of anaemia of chronic disease (Fig. 1)
Telomere-led meiotic chromosome movements: recent update in structure and function
In S. cerevisiae prophase meiotic chromosomes move by forces generated in the cytoplasm and transduced to the telomere via a protein complex located in the nuclear membrane. We know that chromosome movements require actin cytoskeleton [13,31] and the proteins Ndj1, Mps3, and Csm4. Until recently, the identity of the protein connecting Ndj1-Mps3 with the cytoskeleton components was missing. It was also not known the identity of a cytoplasmic motor responsible for interacting with the actin cytoskeleton and a protein at the outer nuclear envelope. Our recent work [36] identified Mps2 as the protein connecting Ndj1-Mps3 with cytoskeleton components; Myo2 as the cytoplasmic motor that interacts with Mps2; and Cms4 as a regulator of Mps2 and Myo2 interaction and activities (Figure 1). Below we present a model for how Mps2, Csm4, and Myo2 promote chromosome movements by providing the primary connections joining telomeres to the actin cytoskeleton through the LINC complex.Fil: Lee, C. Y.. Oklahoma Medical Research Foundation; Estados UnidosFil: Bisig, Carlos Gaston. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Química Biológica de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Centro de Investigaciones en Química Biológica de Córdoba; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Biológica; ArgentinaFil: Conrad, M. N.. Oklahoma Medical Research Foundation; Estados UnidosFil: Ditamo, Yanina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Química Biológica de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Centro de Investigaciones en Química Biológica de Córdoba; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Biológica; ArgentinaFil: Almeida, L. Previato de. Oklahoma Medical Research Foundation; Estados UnidosFil: Dresser, M.E.. Oklahoma Medical Research Foundation; Estados UnidosFil: Pezza, Roberto. Oklahoma Medical Research Foundation; Estados Unido
Atividade da urease em latossolos sob influência da cobertura vegetal e da época de amostragem
Estimating the Global Burden of Endemic Canine Rabies
Background
Rabies is a notoriously underreported and neglected disease of low-income countries. This study aims to estimate the public health and economic burden of rabies circulating in domestic dog populations, globally and on a country-by-country basis, allowing an objective assessment of how much this preventable disease costs endemic countries.
Methodology/Principal Findings
We established relationships between rabies mortality and rabies prevention and control measures, which we incorporated into a model framework. We used data derived from extensive literature searches and questionnaires on disease incidence, control interventions and preventative measures within this framework to estimate the disease burden. The burden of rabies impacts on public health sector budgets, local communities and livestock economies, with the highest risk of rabies in the poorest regions of the world. This study estimates that globally canine rabies causes approximately 59,000 (95% Confidence Intervals: 25-159,000) human deaths, over 3.7 million (95% CIs: 1.6-10.4 million) disability-adjusted life years (DALYs) and 8.6 billion USD (95% CIs: 2.9-21.5 billion) economic losses annually. The largest component of the economic burden is due to premature death (55%), followed by direct costs of post-exposure prophylaxis (PEP, 20%) and lost income whilst seeking PEP (15.5%), with only limited costs to the veterinary sector due to dog vaccination (1.5%), and additional costs to communities from livestock losses (6%).
Conclusions/Significance
This study demonstrates that investment in dog vaccination, the single most effective way of reducing the disease burden, has been inadequate and that the availability and affordability of PEP needs improving. Collaborative investments by medical and veterinary sectors could dramatically reduce the current large, and unnecessary, burden of rabies on affected communities. Improved surveillance is needed to reduce uncertainty in burden estimates and to monitor the impacts of control efforts
Low-Cycle Fatigue of Ultra-Fine-Grained Cryomilled 5083 Aluminum Alloy
The cyclic deformation behavior of cryomilled (CM) AA5083 alloys was compared to that of conventional AA5083-H131. The materials studied were a 100 pct CM alloy with a Gaussian grain size average of 315 nm and an alloy created by mixing 85 pct CM powder with 15 pct unmilled powder before consolidation to fabricate a plate with a bimodal grain size distribution with peak averages at 240 nm and 1.8 μm. Although the ultra-fine-grain (UFG) alloys exhibited considerably higher tensile strengths than those of the conventional material, the results from plastic-strain-controlled low-cycle fatigue tests demonstrate that all three materials exhibit identical fatigue lives across a range of plastic strain amplitudes. The CM materials exhibited softening during the first cycle, similar to other alloys produced by conventional powder metallurgy, followed by continual hardening to saturation before failure. The results reported in this study show that fatigue deformation in the CM material is accompanied by slight grain growth, pinning of dislocations at the grain boundaries, and grain rotation to produce macroscopic slip bands that localize strain, creating a single dominant fatigue crack. In contrast, the conventional alloy exhibits a cell structure and more diffuse fatigue damage accumulation
- …
