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Abstract 
 
Processes of fluid flow and chemical transport through the vadose zone can be 
characterized through the isotopic systematics of natural soils, minerals, pore fluids and 
groundwater.  In this contribution, we first review our research using measured isotopic 
variations, due both to natural and site related processes, of the elements H, O, N, Sr and 
U, to study the interconnection between vadose zone and groundwater contamination at 
the Hanford Site in south-central Washington.  We follow this brief review with a 
presentation of new data pertaining to vadose zone and groundwater contamination in the 
WMA T-TX-TY vicinity.  Uranium (U) isotopic data for the C3832 core (WMA TX) 
indicates the involvement of processed natural U fuel, and links the observed U 
contamination to the nearby single shelled tank TX-104. The data also precludes 
contamination from an early 1970’s TX-107 leak.  In the case of the C4104 core (WMA 
T), the U isotopic data indicates a mixture of processed natural and enriched U fuels 
consistent with the major leak from T-106 in 1973. Uranium and Strontium isotopic data 
for the cores also provides direct evidence for chemical interaction between high-pH 
waste fluid and sediment.  Isotopic data for groundwater nitrate contamination in the 
vicinity of WMA-T strongly suggests high-level tank waste (most likely from T-106) as 
the source of very high 99Tc concentrations recently observed at the NE corner of WMA-
T.   
 

Introduction 

In 1942 Hanford, Washington was selected as the site for major plutonium production 

based on its relative isolation and its proximity to the Columbia River, which provided 

ample power from the Grand Coulee Dam and cooling water for nuclear reactors and Pu 

separation operations (Smyth 1945).  From the time of WWII-era production through the 

Cold War and eventual end of Pu production in 1987, over 100,000 metric tons of 

uranium fuel was processed through the reactors and chemical separation processes 

(DOE/RL-98-48, 1999).  High-level radioactive waste resulting from these processes was 

stored in tank “farms” located in the 200 East and 200 West areas on the Hanford plateau 

(Figure 1).  Leaks and spills associated with many of these tanks together with lower 

level radioactive waste released directly to the subsurface has left a legacy of vadose zone 

and groundwater contamination at the site. Some of this contamination has reached the 

Columbia River, whereas most of it is still resident in the 50 to 100-meter thick vadose 

zone. There remains the potential for further contaminant migration from the vadose zone 

to groundwater, and ultimately to the river. Understanding the fate and transport of 

contaminants has been complicated by the presence of multiple potential sources within 
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relatively small areas. We have developed and implemented a suite of isotopic 

techniques, using the elements H, O, N, Sr and U, to study the interconnection between 

vadose zone and groundwater contamination at the Hanford Site.  We demonstrate the 

use of isotopic measurements to establish sources of contamination and place constraints 

on the rates of transfer through the vadose zone to groundwater. Our multiple-isotopic 

system approach has proved to be a powerful means to identify sources of contaminants 

and, once the sources are identified, to understand the subsurface transport routes and 

mechanisms. 

In this paper we review recent results from isotopic research concerning the Hanford 

Site conducted at the Center for Isotope Geochemistry (Lawrence Berkeley National 

Laboratory).  New data are presented that relate to vadose zone contamination in the 

Waste Management Areas (WMA’s) T and TX-TY and the source of 99Tc groundwater 

contamination in the vicinity of the WMA-T. 

Geology and Hydrology of the Hanford Site 

The Hanford Site is situated on the Columbia Plateau within the Pasco Basin, which 

was formed by broad folding and faulting of the Miocene-aged Columbia River Basalt 

Group and overlying sediments.  The Pasco Basin is filled with a series of sediments that 

unconformably overly the Miocene basalts (Hartman et al. 2000).  Immediately above the 

unconformity are Pliocene fluvial and lacustrine deposits of the Ringold Formation, 

consisting of gravels, silts and clays.  At the top of the Ringold Formation is the Cold 

Creek Unit, a zone of pedogenic carbonate that developed in response to arid climate 

conditions (Slate 1996).  During the Pleistocene the informally designated Hanford 

formation was deposited by a series of episodic floods resulting from catastrophic failures 

of ice dams holding back Glacial Lake Missoula located 200 km to the northeast (Bretz 

1969, Waitt 1984).  The Hanford formation comprises unconsolidated sediments of 

generally granitic and basaltic provenance ranging in grain size from gravel, through sand 

to silt. The Hanford formation is overlain by discontinuous Holocene eolian and fluvial 

deposits.  To accommodate the tank farms, the top 10-15 m of the Hanford formation was 

excavated and backfilled once tank construction was complete.  

The basalt ridges (Rattlesnake Hills/Yakima Ridge) along the southwest edge of the 

Hanford Site are the primary source of natural groundwater recharge for the site along 
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with diffuse infiltration through the vadose zone (Gee et al. 1992).  Groundwater flows 

through the unconfined aquifer from the basaltic ridges generally eastward through the 

sediments of the Ringold Formation and Hanford formation, then enters the Columbia 

River along the eastern side of the site.  In addition, there are a stacked series of confined 

aquifers within the Columbia River Basalt Group, which locally communicate with the 

overlying unconfined aquifer.  

Sedimentary structure has a significant effect on the fluid transport of contaminants in 

the vadose zone and groundwater (Serne et al. 2004a). Clastic dikes potentially provide 

cross cutting pathways for contaminant movement.  In the sedimentary column within the 

vadose zone, local highs in moisture content are associated with boundary zones between 

layers of contrasting grain size.  These capillary barriers can generate lateral movement 

of fluids, especially during times of high fluid flux through the vadose zone.  Preferential 

pathways are also developed through coarser-grained units during high flow.  Under low 

fluid flux conditions, the dominant pathways for fluid transmission are fine-grained 

layers where water content is highest.   

 
Review of recent isotopic studies 

1. Groundwater Sr isotope patterns  

The Sr isotopic patterns in groundwater at Hanford site are a good starting point for 

discussion.  Using Sr isotopic analyses of 273 groundwater samples of the unconfined 

aquifer, Singleton et al. (2006) produced a highly detailed groundwater map of the 

variation of 87Sr/86Sr across the Hanford site (Fig. 1).  These data provide a means of 

tracking groundwater sources, including the water in contaminant plumes, independent of 

the contaminants themselves.  The Sr isotopic composition of groundwater is also 

sensitive to infiltration through the vadose zone, weathering of the host sediments, and to 

communication with the deeper confined aquifers within the Columbia River Basalts.  

This large data set provides an assessment of the evolution of the undisturbed natural 

groundwater/vadose zone system, as well as the effects of perturbations to groundwater 

by industrial processes at the site and remediation activities (Singleton et al. 2006). 

The groundwater 87Sr/86Sr map reflects known aspects of the hydrology and geology 

of the Hanford Site (Singleton et al. 2006) and provides new insights about the sources of 
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the present groundwater and broad-scale diffuse infiltration rates. The basalt ridges 

(Rattlesnake Hills/Yakima Ridge) along the southwest edge of the Hanford Site are the 

primary sites of groundwater recharge, and due to the relatively low 87Sr/86Sr of basalts 

(0.704 to 0.707), the freshly infiltrated waters initially take on a low 87Sr/86Sr ratio. As 

groundwater moves to the east it exchanges strontium with sediments that have higher  
87Sr/86Sr (~0.712), while simultaneously obtaining additional diffuse recharge from the 

vadose zone, which also has relatively high 87Sr/86Sr.  The resulting spatial pattern is 

gradually increasing 87Sr/86Sr from west to east across the site along the lines of 

groundwater flow (Fig. 1).  Superimposed on this general pattern are local effects of both 

natural and industrial origin.  Two areas of low 87Sr/86Sr to the north and south of Gable 

Mt. reflect upwelling of deep groundwater with low 87Sr/86Sr from basalt-hosted 

confined aquifers. Infiltration of Columbia River water (87Sr/86Sr ≈ 0.714) along the 

shore of the 100-B,C, -K, -N Areas produces increases in groundwater 87Sr/86Sr.  In 

contrast, infiltration of Yakima River water (87Sr/86Sr ≈ 0.707) causes lowering of 

groundwater 87Sr/86Sr to the west of the Richland North area.  Surface application of 

Columbia River water to recharge ponds in the Richland North area produces a strong 

local high in 87Sr/86Sr. In the 200 West and 200 East Areas large volumes of process 

water were discharged to trenches, cribs and ponds, producing major disturbances of 

water table elevation, and pronounced local highs in groundwater 87Sr/86Sr as result of 

rinsing or stripping of high 87Sr/86Sr strontium from the vadose zone (Singleton et al. 

2006, Maher et al. 2003). 

 
2. Isotopic Constraints on Vadose Zone Processes 

A major factor in the rate of contaminant migration within the vadose zone, and 

hence the timescale for eventual contamination of groundwater, is the rate of fluid 

infiltration through the vadose zone.  Isotopic data derived from vadose zone fluids and 

sediments can be used to place constraints on this rate as well as on the rate of weathering 

of sediments. Maher et al. (2003, 2006) measured and modeled Sr and U isotopic profiles 

of pore fluids and sediments in an uncontaminated core (now well 299-W22-48) taken in 

the 200 West Area to the east of WMA-S-SX.  The Sr and U isotopic compositions of 

pore water vary systematically down core.  In the case of Sr, decreasing 87Sr/86Sr with 
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depth is a response to progressive weathering of the sediment that releases Sr of lower 
87Sr/86Sr. For U, 234U/238U (or activity ratio) generally increases down core, reflecting 

opposing effects of alpha recoil loss of 234U, which tends to increase pore water 
234U/238U, and chemical weathering that tends to lower the pore fluid isotope ratio 

toward the secular equilibrium 234U/238U activity ratio of unity.  For both Sr and U, the 

isotopic ratios are affected by the infiltration rate through the vadose zone.  

Maher et al. (2003) modeled the Sr isotopic data to constrain the ratio of the 

infiltration rate to the weathering rate, and thus with an assumed range of weathering 

rates based on studies of other soils estimated an infiltration flux of 7±3 mm/yr.  

Combining the constraints imposed by both the Sr and U data allows for simultaneous 

estimation of both the infiltration and weathering rates.  Using this analysis, Maher et al. 

(2006) estimated a long-term (at least 100’s of years) infiltration rate of 5±2 mm/yr, and a 

long-term bulk weathering rate of between 10-15.7 to 10-16.5 mol/m2/sec.   

Information from the 87Sr/86Sr groundwater map described above can be use to 

provide model estimates for infiltration fluxes over wider areas.  Singleton et al. (2006) 

used a 1-D model along a line extending ~20 km east-west through an undisturbed 

portion of the Hanford Site to estimate variation in the infiltration flux.  The modeling 

results suggested, for a constrained value of the dissolution rate in the aquifer of 10-7.5 yr-

1, infiltration fluxes of 0-1.4 mm/yr near the western end at Dry Creek Valley, with 

infiltration fluxes perhaps as high 30 mm/yr in the central part of the site.  These 

estimates are in general accord with those based on vegetation and soil type (Gee et al. 

1992, Fayer and Walters, 1995). 

Competition within the soil zone between evapotranspiration and infiltration imposes 

a profile in pore water δ18O that can be measured and modeled to elucidate these 

processes (DePaolo et al. 2004, Singleton et al. 2004).  Vadose zone pore fluids deeper 

than ~2 m in an uncontaminated, relatively undisturbed core (299-W22-48) have 

essentially constant enrichments in δ18O of 2 to 4‰ relative to winter precipitation.  Pore 

fluids in the upper 2 meters vary strongly in δ18O with both depth and season. Modeling 

suggests that the magnitude of the overall vadose zone δ18O shift varies inversely with 

infiltration rate, which in turn is highly dependent on soil type and vegetation.  The 
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results of these studies indicate that diffuse vadose zone drainage increases the δ18O of 

groundwater. Thus natural vadose zone fluids (high δ18O) are distinguishable from 

process water derived from the Columbia River (low δ18O), so that fluids from leaking 

pipes and surface discharge can be distinguished from natural waters.  In the 299-W22-48 

core there is evidence of lateral introduction of low-δ18O process water, elevated levels of 

tritium (DePaolo et al. 2004) and possibly 99Tc (Serne et al. 2002). 

3. Isotopic Signatures of Contamination 

One of the great ongoing challenges at the Hanford Site is the identification of the 

sources of subsurface contamination.  Because there are typically many possible 

contaminant sources within a limited area, such as tank leaks, tank related spills, cribs, 

trenches, and because each source was active at different times and has different chemical 

characteristics, it is difficult to determine by what pathway, and at what rates, the 

contaminants were transported through the vadose zone to groundwater.  An even greater 

challenge is to predict whether, when, and where additional contaminants may start 

arriving at the water table in the future. 

An obvious target for contamination fingerprinting is processed uranium. Uranium 

from nuclear industrial activities has a wide range of 235U/238U and 236U/238U due to 

variable combinations of isotopic enrichment and transformations during the operation of 

uranium-fueled nuclear reactors.  In contrast, natural background uranium has constant 
235U/238U, virtually zero 236U/238U, but variable 234U/238U due to alpha recoil effects. 

The contrasts in isotopic composition between natural and processed uranium, as well as 

the wide compositional range of processed uranium, provide the means to trace 

contaminant uranium in the environment and delineate the sources and history of 

contamination. 

Christensen et al. (2004) used high-precision U isotopic measurements (234U/238U, 
235U/238U, 236U/238U) to investigate the source of groundwater U contamination seen in 

the early 1990’s in the vicinity of the 200 East Area WMA-B-BX-BY.  By comparing the 

U isotopic compositions of groundwater samples to that of porewater samples from two 

cores (299-E33-41 and 299-E33-46) through vadose zone U contamination, the source of 

the groundwater contamination was shown to be consistent with an event in 1951 during 



 8 

which tank BX-102 was overfilled.  The association of the groundwater contamination 

with the BX-102 overfill requires that the U did not migrate just vertically downward 40 

meters through the vadose zone, but instead had a component of lateral travel of as much 

as ~150 m before reaching the water table.  The lateral transport is consistent with the 

large size of the spill and the local geological structure. Furthermore, the observations 

indicate that groundwater U contamination can appear decades (at least 40 years in this 

case) after being released to the vadose zone, confirming the downward migration of 

contaminants in the presence of infiltrating fluids, and the difficulties of predicting 

transport paths in heterogeneous geologic media subject to extreme hydrological 

conditions. 

Nitrate is a widespread groundwater contaminant at the Hanford Site with 

groundwater concentrations locally reaching over 1000 ppm, and with 75 km2 of the 

unconfined aquifer above the EPA drinking water limit of 45 ppm (Hartman et al. 2006). 

Possible sources for this contamination include high-level radioactive waste from leaking 

tanks or cribs, low-level waste derived from site activities, and leaching of naturally 

occurring nitrate from soils and caliche layers within the vadose zone.  Recent 

development of an isotopic analysis technique involving a bacterially mediated process 

for preparation of nitrate samples has allowed the rapid analysis of the δ15N and δ18O of 

small amounts of nitrate (Sigman et al. 2001, Casciotti et al. 2002).  Singleton et al. 

(2005) applied an adapted version of this technique to groundwater and vadose zone pore 

water samples for the analysis of both δ15N and δ18O of dissolved nitrate.  Nitrate 

associated with high-level waste is characterized with high δ15N (>10‰) and normal 

δ18O (~5‰). Low-level waste nitrate has high δ18O (>10‰) with low-to-normal δ15N 

(<5‰), while naturally occurring vadose zone nitrate has low δ18O (<3‰) and low δ15N.  

These results provide a signature for nitrate source identification where concentrations 

alone would not be a distinguishing factor.  This nitrate isotopic tracing technique is 

particularly valuable for identifying potential high-level waste plumes as nitrate is a 

nearly conservative tracer of water movement in the vadose zone and groundwater, and 

can be used to identify possible problem areas where no radioactive contamination 

(e.g., U) may yet be evident due to retardation. 
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New results from WMA-T and WMA-TX-TY  

1. Sample collection and background   

The WMA-T and WMA-TX-TY tank farms are located within the 200 West Area in 

the central portion of the Hanford Site.  WMA-TX-TY is located due south of WMA-T 

and consists of the contiguous TX and TY single-shell tank farms. Three boreholes, 

C3830, C3831 and C3832, (Fig. 2) were drilled in 2003 to evaluate possible leaks from 

single shell tanks TX-105, TX-107 and TX-104 (Serne et al. 2004a).  We analyzed a set 

of vadose zone samples from C3832 near tank TX-104 for the U and Sr isotopic 

compositions of porefluids.   

Two vadose zone cores were taken in the WMA-T in 2003 (Fig. 2), C4104 just to the 

SE of the single shell tank T-106, and a second, C4105, just to the SW (Serne et al. 

2004b).  Tank T-106 was involved in a major event in 1973 in which 435,000 L of high-

level waste leaked to the vadose zone over a seven-week period (Routson et al. 1979).  

Tank T-103 is suspected to have leaked, while T-101 was reported to have been 

overfilled in the 1960’s and to have had a leaky inlet port in 1969 (Jones et al. 2000).  We 

analyzed pore water from vadose zone samples from the C4104 core for U and Sr 

isotopes.  This core has been identified as having the higher U pore water concentrations 

of the two cores (Serne et al. 2004b). 

Groundwater samples analyzed for Sr and nitrate isotopic composition come from 

monitoring wells in the vicinity of WMA-T (Fig. 2, Table 2).  Sampling was conducted in 

conjunction with the Hanford Groundwater Monitoring Program and occurred in May-

June 2005.  These samples supplement samples analyzed by Singleton et al. (2005, 

2006). Groundwater under WMA-T is contaminated with carbon tetrachloride, 

chromium, nitrate, 99Tc and tritium, representing local and dispersed contamination from 

disposal cribs and trenches as well as leaks from single-shell tanks and transfer lines 

(Hartman et al. 2006). In particular, increasing 99Tc concentration in monitoring well 

299-W11-39 (to 27,000 pCi/L in 2005) near the northeast corner of the WMA-T area 

prompted the emplacement of a new well, 299-W11-25B, (Fig. 2), during which depth 

discrete samples were collected to 51 m below the groundwater surface. The depth profile 

from 299-W11-25B revealed high 99Tc concentrations peaking at 182,000 pCi/L at about 
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10 m below the water table (Hartman et al. 2006).  We obtained aliquots for isotopic 

analysis of nine groundwater samples produced by purge-and-pump sampling during the 

drilling of W11-25B. 

2. Analytical Methods 

Two sets of groundwater samples were collected; one set for U and Sr in HDPE 

bottles acidified with Ultrex Nitric acid, and a second filtered into brown glass bottles 

and un-acidified for nitrate isotopic (δ15N and δ18O) analysis. Pore water extracts from 

the vadose zone core samples were obtained by a 1:1 (by weight) deionized water (DI) 

rinse with centrifugation and filtration.  Separate aliquots of the pore water rinses were 

then used for the U and Sr isotopic analyses. The depths of the analyzed samples from 

cores C4104 (near T-106) and C3832 (near TX-104) are presented in Table 1.  

For isotopic analysis, the uranium was chemically separated from the allotted sample 

aliquots using TRU-SPEC (Eichrom Industries Inc.) in small volume Teflon columns 

scaled down from the procedure of Luo et al. (1997).  This separation scheme provides 

column U yields of ≥95%.  
The uranium isotopic compositions (234U/238U, 235U/238U and 236U/238U) were 

measured on a Micromass IsoProbe (MC-ICPMS) at LBNL (Lawrence Berkeley National 

Laboratory). Uranium isotopes 235 and 238 were measured simultaneously on separate 

Faraday cups, while 234 and 236 were measured on a Daly ion counting system situated 

behind a wide-angle retardation potential lens.  Static simultaneous measurement routines 

were used, one for 235U/238U and 234U/238U and a second for 236U/238U. Corrections for 

mass fractionation, Daly-Faraday inter-calibration and for any peak-tail under mass 236 

were calculated from bracketed analyses of an in-house secular equilibrium natural 

uranium standard (20 ppb solution of U ore from the Schwartzwalder Mine, CO provided 

by W. Sharp, Berkeley Geochronology Center).  Isotopic compositions were normalized 

to the natural 238U/235U ratio (= 137.88 by convention (Steiger and Jäger 1977) of the 

standard solution using an exponential mass fractionation law.  Sample solutions were 

introduced to the MC-ICPMS via a desolvation system (Aridus manufactured by CETAC 

Inc.) equipped with a low uptake micro-concentric nebulizer. Typical precision for 
235U/238U is ±0.05% 2σ or better, for 234U/238U and 236U/238U it is ±0.15% 2σ.  236U/238U 
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can be measured down to the 10-7 range where precision degrades by about a factor of 

ten with minimum measurable ratio of ~2x10-8. 

Sr isotopic analyses of vadose zone pore water and groundwater samples were 

conducted using thermal ionization mass spectrometry (TIMS).  Sr for analysis was 

separated using Sr specific resin (Eichrom Industries Inc.), loading and eluting the sample 

with 3N HNO3; then stripping the separated Sr with clean H2O.  The sample was then 

dried down with a drop of HClO4 and a drop of concentrated HNO3 in preparation for 

loading on an outgassed Re filament with 1% H3PO4 and a TaCl emitter solution.  Sr 

isotopic analyses on a VG 54 multicollector mass spectrometer were performed using a 

multidynamic analysis routine, with normalization to 86Sr/88Sr = 0.1194.  The average 
87Sr/88Sr measured for NBS 987 over the period of analysis was 0.710281±0.000014 

(2σ). 

The δ15N and δ18O of nitrate in the groundwater samples were determined using a 

denitrifying bacterial species to generate N2O from dissolved sample NO3
- (Singleton et 

al. (2005) adapted from Sigman et al. (2001) and Casicotti et al. (2002)).  Sample 

nitrite/nitrate is low enough that the nitrite contribution to the generated N2O is 

negligible.  Isotopic analysis of the NO2 is then conducted with a continuous flow mass 

spectrometer (Micromass JA Series IsoPrime), and isotopic values corrected to KNO3 

standards (USGS32, USGS34, USGS35 & IAEA-N3). Analytical precisions are 0.5 per 

mil for both the δ15N and δ18O of nitrate. This technique allows analysis of low sample 

volume (<4 ml) and low concentration samples down to 0.5 mg/L nitrate (Singleton et al. 

2005). 

3. Results from Vadose Zone Borehole C3832 (WMA-TX) 

The pore water U concentrations in core C3832 (near TX-104) outline a vadose zone 

contamination plume (Serne et al. 2004a), with U concentrations up to 28.5 ppm, peaking 

just at the contact between the upper and lower Cold Creek units (Figure 3a).  Fourteen 

pore water samples with sufficient U were analyzed for U isotopic composition. The 

measured 236U/238U of the ten samples within the depth range of 18.96 m to 33.6 m fall 

within a narrow range of 90.12±0.07 (x10-6) to 91.37±0.16 (x10-6), despite pore water U 

concentrations varying by a factor of 10 (Fig. 3b).  Likewise, the 235U/238U of these 
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samples also fall in a narrow range of 0.0066701±27 to 0.0066877±18 (errors given are 

2σ and apply to the last two digits). The pore water U concentrations, 2.7 to 28.5 ppm, 

are much higher than background values of 0.015 to 0.15 ppm.  The near constant U 

isotopic composition across the central nine samples of the plume (Figure 3a and Table 1) 

indicate that these U samples represent essentially the U isotopic composition of the pure 

contaminant, little affected by mixing with background U.  The uniformity of the isotopic 

ratios also suggests a single relatively well-mixed contamination source.  The plume 

boundaries as defined by 236U/238U (or 235U/238U, not shown) are relatively steep, 

falling to near background values over at most 5 meters on the up-core margin, while on 

the down-core margin falling to ~1% contaminant U over an interval of 1.2 m before 

rising again to ~20% contamination in the next 0.2 m interval. Serne et al. 2004a note 

that the lowest extent of any sort of contamination was probably not reached in this core.  

The U isotopic data for C3832 pore water are presented in plots of 236U/238U vs. 
235U/238U (Fig. 4a) and 236U/238U vs. 234U/238U (Figure 4b), which are useful for 

deducing the character of the contaminant sources.  In Fig. 4a, natural background U 

plots on the x-axis (where 236U/238U = 0) at a value of 235U/238U of 0.0072527±21 

(Cowan and Adler 1976, Steiger and Jäeger 1977, Cheng et al. 2000). In Figure 4b, 

natural background U also plots on the x-axis, but within a wide potential range of 
234U/238U.  In natural porewater-rock systems, such as in the vadose zone or the 

saturated zone, the alpha-recoil effect, through the decay of 238U, leads to the 

unsupported build-up of 234U in interstitial porefluid compared to solids (Kigoshi, 1971). 

This results in the common observation in groundwaters (Osmond and Cowart 1992, 

Porcelli and Swarzenski 2003, and references therein) of 234U/238U higher than the 

secular equilibrium value of 54.89 (x10-6) (Chen et al. 2000). In contrast, after timescales 

of 106 years, the bulk solid remains close to secular equilibrium, while the outer 10’s of 

nanometers of grains and small (<40 microns) grains tend to become strongly depleted in 
234U, and so have 234U/238U distinctly less than 54.89 (x10-6) (Maher et al. 2006, 

DePaolo et al. 2006).  

In Fig. 4a the data for the ten central samples of the C3832 U plume form a tight 

cluster on the line representing the array of Hanford processed natural U fuels (Dresel et 
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al. 2002, Christensen et al. 2004).  The remaining four samples (at depths of 13.7m, 18.5 

m, 34.9 m and 35.1 m fall along this line toward the composition of natural U, indicating 

dilution by admixed background U.  In Fig. 4b, the ten central samples also form a cluster 

on the array for processed natural U fuels (Christensen et al. 2004). While the shallowest 

analyzed sample (13.66 m) has a small excess of 234U (234U/238U activity ratio = 

1.051±0.001) the remaining three samples fall very close to the natural U fuels array.  

For the C3832 core, nineteen pore water samples were analyzed for Sr isotopic 

composition.  The pore water Sr concentration in the C3832 core ranges from 0.1 to 4 

ppm, sharply increasing after a depth of 29 m correlating with an increase in CaCO3 

(Serne et al. 2004a).  The measured 87Sr/86Sr ratios are between 0.7136 and 0.7168, 

showing no obvious relationship to pore water Sr concentration.  

 
4. Results from Vadose Zone Borehole C4104 (WMA-T) 

The pore water U concentrations in the C4104 core are as high as 17.8 ppm, 60% of 

the highest concentration in the C3832 core (Serne et al. 2004b).  The zone of elevated U 

concentration extends from 14.32 m to 28.23 m depth where the range of 1.15 ppm to 

17.8 ppm U is 15 to >200 times greater than the background porewater U concentrations 

(Figure 3b). Measured 236U/238U ratios in samples within the elevated U concentration 

plume are between 100.65±0.11 (x10-6) and 184.08±0.30 (x10-6), reaching values twice 

as high as in the C3832 core (Figure 3b). The overall trend down-core, with one reversal 

at 92.6 feet, is of decreasing 236U/238U.  This is in contrast to the relatively uniform 

isotopic composition across the U plume in the C3832 core. The two deepest analyzed 

pore water samples in C4104, at 30.89 m and 32.74 m, have low U concentrations but 

still measurable 236U/238U (0.115 ppm, 38.027±0.093 (x10-6) and 0.053 ppm, 

0.941±0.012 (x10-6) respectively). 

The U isotopic data for C4104 are also plotted in Figure 4a (236U/238U vs. 
235U/238U) and Figure 4b (236U/238U vs. 234U/238U).  In Figure 4b, all the samples plot 

off the line representing processed natural U fuels.  The four shallowest analyzed samples 

form a short array between Hanford processed enriched fuels and the array of natural U 

fuels.  The positions of these data points along a best-fit line imply that the contaminant 

in C4140 consisted of no more than 16% processed enriched U fuel.  The spread of the 
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data for these four samples suggests that the proportion of processed enriched U 

decreases by 2 to 3% down core over the depth interval 14.3 to 23.2 m.  The composition 

of the processed natural U end-member is indicated by the intersection of the best-fit line 

with the array of natural U fuels and has a 236U/238U of approximately 120x10-6, and a 
234U/238U of ~53x10-6 (Figure 4b).  In Figure 4a (236U/238U vs. 235U/238U) the 

remaining five samples (depth interval 24.7 to 32.7 m) must fall along a fanning set of 

mixing lines projecting from the singular composition of natural background U and 

ending at various points along the line through the samples from the 14.3-23.2 m interval.  

The segment thus subtended by the fan of mixing lines indicates a greater range in the 

isotopic composition of the U contaminant than is observed in the four samples from the 

14.3-23.2 m depth interval, extending it down to a minimum of 9% processed enriched U 

fuel.  

On Figure 4b, the distribution of the five samples from the 24.7 to 32.7 m interval 

constrains the range of 234U/238U of the natural background U that diluted/mixed with 

the contaminant U, and so is suggestive of the source (e.g. pore fluid vs. sediment) of the 

natural U. Using sample C4104-9a (23.2 m depth) as representing the contaminant 

endmember, a line including it and samples C4104-10a (24.7 m depth) and -11a (26.6 m 

depth) intersects (at 236U/238U =0) the 234U/238U axis at 54.74±0.19 (x10-6) (±95% 

confid.), indicating that the natural U end member had a secular equilibrium value for 
234U/238U.  For samples C4104-9a, -12a (28.2 m) and -18a (32.7 m), the best fine line 

indicates a different natural U 234U/238U of 56.76±0.09 (x10-6), somewhat above the 

secular equilibrium value.  The extreme example in the core is sample C4104-16a (30.9 

m depth), its position in Figure 4b requires that the natural U end member 234U/238U was 

significantly below the secular equilibrium value, as low as 50.86±0.07 (x10-6) (±95% 

confid.) if sample -9a is used as the contaminant end member.  Even using the minimum 

of 9% processed enriched fuel suggested above for the contaminant in C4104 (Figure 4a) 

does not affect the requirement for sample 16a for a component of natural U significantly 

below secular equilibrium.  However, for samples 10a and 11a, it would allow values 

above but close to secular equilibrium.  Still, these values are below the range for vadose 

pore water observed in the B-BX WMA (Christensen et al. 2004) and a background clean 

core (Maher et al. 2006) (ranges shown in Figure 4b).   
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Eighteen pore water samples from core C4104 were analyzed for 87Sr/86Sr ratio.  

Pore water concentrations of Sr ranged from <0.1 ppm to 20 ppm, with the peak in Sr 

concentration coinciding with peaks in nitrate and 99Tc concentrations (Fig. 5); (Serne et 

al. 2004b). The 87Sr/86Sr of pore water ranges from 0.7112 to 0.7148, and except for the 

shallowest sample, all are lower than measured in core C3832 pore water samples. 

 
5. Groundwater Data for the WMA-T 

Sr isotopic and concentration data for groundwater monitoring wells in the vicinity of 

WMA-T and WMA-TX-TY are presented in Table 2 and in Figure 6 along with 

previously published data from Singleton et al. (2006).  The resulting map of 

groundwater 87Sr/86Sr highlights two areas near WMA-T of enhanced recharge from the 

vadose zone indicated by 87Sr/86Sr > 0.710 (Fig. 6a).  One area appears associated with 

the T-36, T-7 and T-32 cribs, where ~1.4x105 kL of low-level waste, including nitrate, 

was disposed to the vadose zone.  Monitoring wells reveal very high groundwater nitrate 

concentrations, up to 3000 ppm near these cribs as well as high Sr concentrations up to 

2400 ppb (~10x normal Sr groundwater concentrations).  A second area of very high 
87Sr/86Sr is located just north of WMA-T near the beginning of the 216-T-4-2 ditch 

which drains dilute process water.  Groundwater in this area contains moderately high 

nitrate (250 ppm) and 99Tc concentrations (140 pCi/L).  Near the NE corner of WMA-T, 

there is moderately high groundwater 87Sr/86Sr (>0.7095 and <0.7100).  These wells are 

also associated with very high 99Tc concentrations.  The set of discrete depth samples 

from 299-W11-25B (location shown in Fig. 2) provides a vertical section of the 

unconfined aquifer in the region of highest 99Tc concentration (Fig. 6b).  The samples 

describe a zone of vertical mixing within the aquifer between Sr with high 87Sr/86Sr 

flushed from the vadose zone and Sr with lower 87Sr/86Sr representative of the broader 
87Sr/86Sr trend for groundwater in the area.  This parallels the contrast seen in pairs of 

adjacent wells drilled to different depths, where groundwater from the deep well has 

lower 87Sr/86Sr than groundwater from the shallow well (Fig. 6a).  

Nitrate isotopic data (δ15N and δ18O, Table 2) for shallow groundwater wells 

surrounding WMA-T and groundwater samples from the well 299-W11-25B depth 
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profile are presented in Fig. 7.  Most of the WMA-T groundwater samples form an array 

separate from the array described by the nine discrete depth samples from 299-W11-25B.  

The two exceptions are samples from wells 299-W11-39 and 299-W10-8, located near 

the northeast corner of WMA-T and 299-W11-25B. The WMA-T array traverses the 

region in Fig. 7 between the field representing the composition of synthetic nitrate and 

the field representing the isotopic composition of naturally occurring nitrate in the vadose 

zone.  The high δ18O end of the WMA-T array is represented by samples with very high 

(>900 ppm) nitrate concentrations, including well 299-W10-4 (2420 ppm nitrate), 

adjacent to the T-36 crib. The low δ18O end of the array has the lowest nitrate 

concentrations. These observations suggests that this array represents mixing between 

synthetic nitrate from low level waste and natural nitrate flushed from the vadose zone.  

The data for discrete depths in well 299-W11-25B describes a separate trend (Fig. 7) 

from synthetic nitrate (low-level waste) toward fields representing the isotopic 

compositions of nitrate from vadose zone samples contaminated by high-level tank 

related waste.  The deepest sample in 299-W11-25B falls at the upper end of the array, 

closest to the field for low-level waste.  This sample also has the lowest 99Tc 

concentration.  The shallowest two samples, including the sample with the highest 99Tc 

concentration (151,000 pCi/L) fall at the low δ18O, high δ15N end of the array toward the 

composition of nitrate from high-level waste.  This indicates that nitrate in 299-W11-25A 

represents variable mixing between high-level and low level sources, and implies that the 

source of the very high levels of 99Tc seen in the upper part of 299-W11-25B and in the 

NE corner of WMA-T is from tank-related high-level waste. 

Uranium concentrations in the analyzed WMA-T and 299-W11-25B samples are low, 

less than 2 ppb.  Their U isotopic compositions are presented in Table 3. The measured 
235U/238U ratios of the samples are indistinguishable or very close to the natural ratio. 

The 236U/238U of these samples are all very low, less than 5x10-7.  Both these factors 

indicate a very low level of contamination by processed U.  The contaminant 

contribution, <1%, is too minor to identify accurately the source of the U contamination.  

The 234U/238U of these six samples are all relatively high (74.1 x10-6 to 96.5x10-6) 

compared to groundwater in the vicinity of the WMA-B-BX-BY in the 200 East Area 

(Christensen et al. 2004) and at the location of the 299-W22-48 borehole in the southern 
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portion of the 200 West Area (Maher et al. 2006) but similar to the value, 98.4x10-6, for a 

clean well (299-W11-6) situated ~650 m to the SE (Fig. 6).  

 
Discussion 

1. Sources and Histories of Contamination for Boreholes C3832 and C4104 Cores 

In the C3832 core, collected from WMA-TX-TY, the isotopic composition of the 

contaminant is consistent with processed natural U fuel with a 236U/238U as high as 

91x10-6.  No evidence for a component of processed enriched U is seen.  These 

observations place constraints that can be used to infer the source of the contaminant U 

based on the history of fuel type and usage at the Hanford Site.  From a perusal of a 

model history of processed natural U (Watrous 2002), the first time that T-plant 

processed fuel reached a 236U/238U of ~91x10-6, was in 1951.  Enriched U fuel was not 

processed until 1958, thus suggesting that either the contamination in C3832 came from a 

pre-1958 source, or from a source/waste stream that never received processed enriched U.  

Though it is not listed in site documents as having leaked, single shell tank TX-104, 

located just south of C3832 (Fig. 2) matches well the above constraints.  A possible 

alternative is the set of trenches arrayed 125 m to the west of WMA-TX. These retention 

trenches received over 6000 kL of first cycle supernatant via tanks TX-109, TX-110 and 

TX-111 in order to provide needed tank volume for processed fuel separations (Maxfield 

1979). However, the first decontamination cycle waste had considerably lower uranium 

concentrations than the “metal waste” that contained nearly all the uranium from the 

extraction (Anderson 1990).  Thus the T-21 to T-25 retention trenches are not a likely 

source of the contamination observed in C3832. Estimate of the isotopic composition of 

U associated with TX-107 leaks during the period 1975 to 1977 (Jones et al. 2000) are 

not compatible (Fig. 4) with the apparent lack of processed enriched U in C3832.  Myers 

(2005) presents a scenario where the metal waste loss from tank TX-104 took place 

during a process to sluice sludge from the tank for recovery of the uranium.  Thus the 

chemistry and mobility of the waste may have been modified during the sluicing process.  

The uranium isotopic data is consistent with this hypothesis. 

The U contamination in C4104 in the WMA-T, as described above, represents a 

mixture of processed natural U and processed enriched U, in roughly the proportions of 
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85% and 15% respectively.  In detail the proportion of processed enriched U appears to 

decrease down hole from 16% to 9%, suggesting that contamination came from a source 

that was not perfectly well mixed, or that the composition of the source changed 

somewhat with time during the leak event.  The inferred compositions of the two 

contaminant end members places some constraints on the time frame of the 

contamination.  From the line through the shallowest four samples, the processed natural 

U component had a 236U/238U of ~120x10-6, while the processed enriched U component 

had a 236U/238U of approximately 525x10-6.  These values are both consistent with 

processed enriched U in the late 1960’s (Watrous, 2002).  No natural U fuel was 

processed in 1970, while the batches run in 1971-1972, the last years of the use of natural 

U fuel, never reached a 236U/238U level greater than 95x10-6. The material leaked in 

1973 from T-106 originated from fuel rods processed as much as five years before the 

event (Rouston et al. 1979 see appendix G) and so is compatible with the broad time 

frame indicated by the U isotopic observations in C4104.  Mixing within the vadose zone 

of the T106 leak fluids with fluids from a nearly contemporaneous leak at T-103 is a 

possible explanation of the range seen in C4104, but though the estimated U 

concentrations are similar for the two leaks (Jones et al. 2000), the leak volume for T-106 

and hence the mass of U involved was 40 times greater.  An alternate explanation is that 

the leak changed composition with time.  The 1973 T-106 incident occurred during the 

transfer of supernatant to T-106 via cascade flow by pumping the supernatant first into 

tank T-105 (Rouston et al. 1979), probably causing some time dependent mixing amongst 

the contents of T-105, T-106 and the newly added supernatant.  This would have 

produced a non-constant U isotopic composition to the contaminant fluid that percolated 

downwards at the location of C4104, producing the isotopic range observed down core 

over the 14.3-23.2 m depth interval. 

2. Isotopic Evidence for Sediment-Contaminant Fluid Interaction 

The U and Sr isotopic compositions of vadose zone pore water in cores C4104 and 

C3832 presented above provide evidence of chemical interaction of contaminant fluids 

with sediment.  In Figure 8, for C4104 236U/238U shows a correlation with pH, indicating 

that as the extreme pH of the contaminant fluid was reduced or neutralized, the 
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contaminant U was diluted by natural composition U with 236U/238U = 0.  Wan et al. 

(2004a,b) show that high pH (~14) tank supernatant will react with Hanford sediment 

silicates in a chemical process that reduces pH in the main plume, while pushing ahead a 

front of high Ca, Mg, etc. pore fluid concentrations resulting from cation exchange due to 

high Na+ contaminant fluid (Serne et al. 2004b).  This front would likely be accompanied 

by mobile contaminants such as nitrate and 99Tc.  As described above, C4104 samples 

(10a, 11a, and 16a) in the lower portion of the core, likely represent mixing between the 

U contaminant and background natural U with 234U/238U ratio just near, to well below in 

the case of 16a, the secular equilibrium value.  With time the alpha-recoil effect imparts 

distinctive 234U/238U signatures to sedimentary material and pore water/groundwater that 

can be used to distinguish between simple mixing between contaminant fluids and pore 

fluids, versus chemical interaction between the contaminant fluid and the host sediment.  

For C4104 samples 10a and 11a, the near secular equilibrium 234U/238U ratio of the 

natural U end member is consistent with wholesale release of U from the bulk sediment 

as a result of the reaction between the high pH fluid and sediment.  Sample 16a presents 

an extreme value of 234U/238U for the natural U component, significantly below the 

secular equilibrium value.  This is consistent with release of U from the outer edges of 

grains or from fine-grained material (Maher et al. 2006).  Interestingly, sample 16a 

consists of a sandy mud (Serne et al. 2004b), providing a fine-grained source material for 

low 234U/238U.  

Though no high pH was observed in C3832 (Serne et al. 2004a), samples 121B, and 

61B fall on or just to the left of the natural U fuel line in Fig. 4b suggesting some 

interaction between contaminant fluid and sediment.  This suggests the initial occurrence 

of high pH in the contaminant plume seen in C3832, and would thus emphasize the 

unreliability of pH as an indicator of the involvement of tank waste since pH can be 

altered (Wan et al. 2004a,b; Serne et al. 2004b). 

Further evidence for contaminant/sediment interaction is provided by the Sr isotopic 

profiles of C4104 and C3832.  In Figure 9 they are compared to the 87Sr/86Sr profile of 

the 299-W22-48 core (Maher et al. 2003), which showed minimal impact from site 

contamination.   Both the C4104 and C3832 profiles appear shifted in 87Sr/86Sr toward 
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the range of bulk sediment and away from the clean core profile, with the shift for C4104 

being the greatest.  This suggests the release of relatively low 87Sr/86Sr from the whole 

rock or feldspars (Figure 9) due to interaction with the contaminant fluid. In detail, the 

greatest apparent 87Sr/86Sr shift in C4104 occurs within the zone of elevated pH (> ~9 

between 14 and 28 m depth). At the peak of pore water 99Tc and Sr concentrations (Sr = 

20 ppm at 35.4 m depth, Fig. 5), there is a local high in 87Sr/86Sr ( =0.7123) perhaps 

reflecting Sr released from clays in the ion exchange process that produced the high Ca 

concentration front. 

3. Isotopic constraints on the Source of 99Tc Contamination in the Vicinity of WMA-T 
The isotopic data for nitrate in groundwater samples from 299-W11-25B indicates 

that it is derived from a mixture of high-level tank waste and low-level process waste 

discharged to disposal cribs and trenches.  The most likely source of the low-level waste 

is a plume of groundwater nitrate extending from the southwest corner of the WMA-T 

area.  Simpson et al. (2001) have estimated that 3.6x106 kg of nitrate was discharged to 

the T-7 and T-32 cribs located in that area (Figure 2).  Groundwater samples from the 

closest monitoring wells to those cribs, 299-W10-4 and 299-W10-28, consistently have 

the highest nitrate concentrations in the WMA-T area.  In addition, the δ18O values of the 

nitrate in all these samples are high (up to 15.4‰), indicating a high proportion of 

synthetic nitrate. 

Given the relatively low 99Tc concentrations in these samples (<1000 pCi/L), it 

follows that most of the 99Tc in 299-W11-25B must be derived from the source of the 

high-level waste nitrate.  The T-106 spill observed in the C4104 core is a likely candidate 

for the source of the high-level waste contamination.   There were several other 

documented leaks from the T tanks, but this was the largest leak.  The T-101 tank (which 

is closer to the northeast corner of WMA-T) also leaked, but that leak was much smaller 

volume (<10%) and the concentration of 99Tc in the leak fluids was much lower (~7%). 

The net contributions of fluid from the T-106 leak necessary to account for the 99Tc 

concentrations observed in 299-W11-25B is relatively low.  The highest 99Tc 

concentrations in the C4104 core (between 35 and 39 m depth on Figure 5) range from 

4x106 to 25x106 pCi/L, averaging 8x106 pCi/L.  At that level, only a 2% contribution to 
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groundwater from the pore fluids from C4104 would be necessary to produce the highest 
99Tc concentration measured in 299-W11-25B.  The nitrate concentrations in the peak 

interval in C4104 range from about 4,500 to 10,500 mg/L averaging about 6,000 mg/L.  

2% of the average composition would be 120 mg/L, or only about 21% of the nitrate 

concentration observed in the C4104 sample with the peak 99Tc concentration.  That 

implies that the remaining 79% of the nitrate in the peak sample is derived from the low-

level groundwater nitrate plume.   The amount of T-106 fluids necessary to account for 

the other samples from 299-W11-25B will all be less (<0.3% for the deepest sample). 

The suggestion that the T-106 spill as the source of contamination may be verified if 

a sufficient fraction of contaminant U appears in groundwater samples associated with 

high 99Tc.  Chemical retardation of U relative to 99Tc may be delaying the arrival of T-

106 contaminant U.  However, a 1999 sample from well 299-W10-24 analyzed by Dresel 

et al. (2002) had a 236U/238U of ~32x10-6, about ten times the level of the 2005 sample 

(Table 2).  The W10-24 groundwater sample from 1999, plotted in Fig. 4a, is consistent 

with natural U with ~20% contamination by T-106 U.  By the time of the 2005 sample, it 

appears that this T-106 U had been essentially diluted/flushed away.  

Summary and Conclusions 

Isotopic studies add an extra dimension to the characterization of subsurface 

contamination leading to insights into contaminant source and behavior as well as the 

processes that affect contaminant transport and mobility. Natural strontium isotopic 

composition (87Sr/86Sr) is particularly sensitive to water-rock interaction and show areas 

of enhanced recharge through elevated 87Sr/86Sr in groundwater.  The nitrogen and 

oxygen isotopic compositions of nitrate show distinct contrasts between the attributed 

high- and low-level waste sources investigated so far. Uranium isotopic measurements 

can also be useful for understanding water-rock interactions.  In addition for the Hanford 

site, because the U isotopic ratios of potential sources changed through time as a result of 

varying fuel enrichment and reactor exposure, U isotopic measurements can also be used 

to identify the source and timing of contamination.  Combining multiple isotopic 

measurements with conventional chemical data, constrains the possible contaminant 

sources and the transport path and rate in the vadose zone and groundwater. 
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Our recent studies in WMA T-TX-TY strongly implicate tank-sourced waste, likely 

the T-106 leak in 1973, in the shallow 99T and nitrate contamination near the northeast 

corner of WMA-T.  The uranium and strontium isotopic data for the C3832 and C4104 

cores, and chemical data from previous studies, show varying amounts of interaction 

between the infiltrating waste fluids and vadose zone sediments.  The high pH, high ionic 

strength tank fluids greatly enhance the reaction with sediments over that of background 

infiltrating recharge.  Even the relatively low levels of uranium contamination seen in the 

WMA-T and WMA-TX-TY vadose zone cores are sufficient to provide considerable 

constraints on the source and timing of contamination.  
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Figure Captions: 

Figure 1: Map of the 87Sr/86Sr of groundwater for the Hanford Site after Singleton et al. 
(2006). 
Figure 2: Map of the T-TX-TY Waste Management Areas in the 200 West Area, 
Hanford, WA.  Shown are locations of vadose zone boreholes including the studied 
borehole cores C4104 and C3832.  Locations of groundwater sampling wells, and the 
location of the multi-level well W11-25B are also shown.  For brevity, the 299- prefix 
has been dropped from well names. Contours of 99Tc groundwater concentration from 
Hartman et al. (2006). 
Figure 3: Profiles for the C3832 (panel A) and C4104 (panel B) cores of Uranium 
concentration and 236U/238U. Uranium concentrations are from Serne et al. (2004a,b). 
Figure 4: Plots of Uranium isotopic data: (A) 236U/238U vs. 235U/238U; (B) 236U/238U 
vs. 234U/238U.  Black circles are data for pore water extracts from C4104 (WMA-T), 
pink squares are data for pore water extracts from C3832 (WMA-TX).  Errors for data are 
approximately the size of the symbols or smaller. Red triangles represent estimates by 
Jones et al. (2000) of the U isotopic compositions of suspected/known tank leaks in the 
WMA’s T-TX-TY.  The blue square and green diamond represents the U isotopic 
compositions of the BX102 and B110 tank leaks established by Christensen et al. 2004.  
In A, data for a 1999 sample of W10-24 is from Dresel et al. (2002). Inset in B at 
expanded scale shows the best-fit line through the top four samples and its relationship to 
model compositions for processed enriched U fuels from Waltrous and Wootan, (1997). 
Numbers along best-fit line represent percentage of processed enriched fuel in the 
mixture. 
Figure 5: Profile through core C4104 of the pore water concentrations of Sr (µg/L or 
ppb), nitrate (mg/L or ppm), U (µg/L or ppb) and 99Tc (nCi/L).  Data from Serne et al. 
(2004b). 
Figure 6: (A) Map of groundwater 87Sr/86Sr in the WMA T-TX-TY and vicinity.  Data 
from Table 2 and Singleton et al. (2006) (B) Profile below water table in W11-25B (see 
Fig. 2 for location) of 87Sr/86Sr. Same color scale as for A. 
Figure 7: Plot of δ15N vs. δ18O for nitrate in groundwater samples from the WMA-T and 
for the sub-water table depth discrete samples from W11-25B.  Additional data, the field 
for background cores, and data for contaminated cores (C4105 and C3832) from 
Singleton et al. 2005. The field for synthetic nitrate (representing low-level waste) is 
from Kendall (1998) and Amberger and Schmidt (1987).  Lines connect samples from the 
same well taken at different times, with the more recent sample indicated by a white dot.  
Figure 8: Plot of 236U/238U vs. pH for core C4104 in the WMA-T.  Data for pH from 
Serne et al. (2004b). 
Figure 9: Plot of depth below ground surface vs. 87Sr/86Sr comparing vadose zone pore 
waters from the contaminated cores C4104 (black circles) and C3832 (red squares) with 
vadose zone pore water from an uncontaminated core (blue diamonds, W22-48 Maher et 
al. 2003). Green stars represent bulk sediment analyses for W22-48 (Maher et al. 2003). 
Dashed lines connect corresponding stratigraphic depths for the cores.  Pink shaded and 
purple shaded areas represent zones of U and 99Tc contamination.  
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Figure 2. 
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Figure 3a, 3b 
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Figure 4a, 4b 
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Figure 5. 
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Figure 6a,b 
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Figure 7. 
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Figure 8. 
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Figure 9. 
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Table 1a (C3832) 

sample # 
Depth 

BGS, m 87Sr/86Sr ±2σ [Sr] ppm† 234U/238U x106 ±2σ 235U/238U ±2σ 236U/238U x106 ±2σ [U]. ppm† 
C3238-15B 5.15 0.715930 0.000013 0.75        
C3238-28B 8.78 0.716396 0.000010 1.18        
C3238-37B 11.22 0.714407 0.000009 0.58       0.113 
C3238-44B 13.66 0.715761 0.000014 0.35 57.67 0.05 0.0072379 0.0000058 0.096 0.002 0.071 
C3238-52B 15.82 0.716813 0.000011 0.34       0.019 
C3238-53B 16.40 0.715854 0.000014 0.21       0.042 
C3238-61B 18.54 0.716158 0.000010 0.50 53.96 0.08 0.0067069 0.0000022 86.50 0.08 0.407 
C3832-62B 19.08 0.715647 0.000011 0.11 53.96 0.15 0.0066828 0.0000043 90.13 0.07 2.66 
C3832-69B 23.38 0.714739 0.000009 0.20 54.11 0.06 0.0066877 0.0000018 90.66 0.13  
C3832-76B 24.18 0.714739 0.000009 0.32 54.00 0.06 0.0066814 0.0000035 90.66 0.13 2.78 
C3832-79B 24.18 0.714052 0.000011 0.67 53.80 0.05 0.0066807 0.0000024 90.44 0.13 12.82 
C3832-83B 25.52 0.714334 0.000011 0.63 53.82 0.08 0.0066734 0.0000015 90.66 0.13 7.38 
C3238-87B 26.74 0.714317 0.000009 0.63 53.77 0.08 0.0066731 0.0000018 90.99 0.12 9.58 
C3238-93B 28.57 0.714568 0.000009 0.59 53.97 0.06 0.0066882 0.0000031 90.79 0.13 5.65 
C3238-96B 29.36 0.714310 0.000010 0.78 53.81 0.05 0.0066727 0.0000019 91.30 0.08 12.06 
C3238-104B 31.92 0.715670 0.000010 1.42 53.77 0.10 0.0066701 0.0000027 91.37 0.16 22.53 
C3238-110B 33.72 0.715487 0.000010 1.61 53.83 0.06 0.0066768 0.0000019 90.48 0.13 23.85 
C3238-114B 34.91 0.713610 0.000009 2.81 55.24 0.12 0.0072463 0.0000042 1.22 0.01 0.051 
C3238-121B 35.12 0.713779 0.000011 2.38 54.54 0.11 0.0071269 0.0000047 19.31 0.04 0.043 

†From Serne et al. (2004a) 
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Table 1b (C4104) 

Sample 
Depth 

BGS, m 87Sr/86Sr ±2σ [Sr] ppm† 234U/238U x106 ±2σ 235U/238U ±2σ 236U/238U x106 ±2σ [U] ppm† 
C4104-1a 4.93 0.714836 0.000009 0.86       0.031 
C4104-2a 6.92 0.713107 0.000013 0.41       0.037 
C4104-6a 14.32 0.711543 0.000010 0.15 57.59 0.08 0.0068840 0.0000025 183.59 0.18 1.18 
C4104-7a 18.01   0.20 57.33 0.06 0.0068577 0.0000017 184.08 0.30 10.50 
C4104-8b 19.32 0.712244 0.000027 0.11 57.28 0.09 0.0068644 0.0000025 178.35 0.33 2.24 
C4104-9a 23.17 0.712514 0.000010 0.11 57.19 0.08 0.0068555 0.0000022 177.22 0.54 17.80 

C4104-10a 24.70 0.713477 0.000063 0.06 56.64 0.11 0.0068999 0.0000037 138.63 0.24 7.27 
C4104-11a 26.62   0.10 56.13 0.07 0.0069556 0.0000032 100.65 0.11 1.15 
C4104-12a 28.23 0.712605 0.000011 0.16 57.00 0.14 0.0069607 0.0000051 116.20 0.18 3.94 
C4104-13a 28.52 0.713192 0.000009 0.41       0.044 
C4104-14a 28.86 0.713064 0.000009 0.37       0.048 
C4104-15a 30.59 0.712779 0.000009 0.85       0.092 
C4104-16b 30.89 0.712357 0.000013 0.58 52.00 0.06 0.0071368 0.0000018 38.03 0.09 0.115 
C4104-17a 32.34 0.711956 0.000026 0.63       0.077 
C4104-18a 32.74 0.711911 0.000021 0.47 56.77 0.09 0.0072487 0.0000028 0.94 0.01 0.053 
C4104-19a 33.83 0.712821 0.000011 1.40       0.043 
C4104-20a 35.36 0.712265 0.000010 20.00       0.019 
C4104-21a 36.87 0.712139 0.000011 7.20       0.004 
C4104-22a 37.81 0.711836 0.000010 9.20       0.003 
C4104-23a 38.75 0.711232 0.000010 5.30       0.005 

†From Serne et al. (2004b) 
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Table 2. 

Well 
Depth 

BWT, m 
Sample 

Date 

99Tc, 
pCi/L* [NO3-] ppm* δ15NNO3 δ18ONO3 87Sr/86Sr ±2σ [Sr] ppm 

299-W10-1 ~0 5/9/05 81 126 5.3 8.0    
299-W10-1 ~0 2/4/05 75 132   0.708690 0.000009 0.288 

299-W10-22 ~0 5/9/05 129 292 2.8 11.3    
299-W10-24 ~0 2/7/05 1470 400 5.5 10.3 0.709529 0.000010 0.089 
299-W10-24 ~0 5/9/05 1220 319 2.0 12.4    
299-W10-28 ~0 2/4/05 258 1540 4.0 14.5 0.710008 0.000009 1.55 
299-W10-28 ~0 5/9/05 310 1660 4.4 13.4    
299-W10-4 ~0 2/7/05 876 2420 2.4 15.4 0.710751 0.000011 2.39 
299-W10-8 ~0 6/13/05 91 192 8.3 9.2    

299-W11-12 ~0 5/10/05 167 109 7.0 3.3    
299-W11-39 ~0 2/11/05 12200 113 9.8 2.6 0.709681 0.000009 0.359 
299-W11-39 ~0 5/10/05 27400 157 12.8 4.1    
299-W11-40 ~0 2/7/05 1440 207 6.3 1.1 0.709243 0.000010 0.384 
299-W11-40 ~0 5/12/05 2050 243 4.6 5.7    
299-W11-41 ~0 2/7/05 3270 850 4.5 10.7 0.708719 0.000010 0.456 
299-W11-42 ~0 2/8/05 1910 1120 1.3 13.3 0.708828 0.000010 0.249 
299-W11-42 ~0 5/10/05 1740 832 2.2 15.2    
299-W11-7 ~0 5/12/05 422 147 5.7 7.3    
W11-25B 5.5 2/8/05 77010 372 9.7 5.9 0.7096515 0.000024 0.607 
W11-25B 11.3 2/8/05 151810 569 11.8 7.6 0.7091092 0.000010 0.438 
W11-25B 18.0 2/16/05 54740 427 9.4 9.9 0.7091178 0.000011 0.296 
W11-25B 24.1 2/17/05 49810 404 7.6 10.1 0.7088733 0.000011 0.232 
W11-25B 29.9 2/23/05 42330 415 9.9 10.8 0.7089387 0.000011 0.262 
W11-25B 36.0 2/24/05 37740 409 7.1 9.1 0.7087739 0.000013 0.301 
W11-25B 42.1 3/4/05 25160 335 8.2 10.0 0.7084827 0.000011 0.305 
W11-25B 48.2 3/7/05 30770 370 7.8 10.3 0.708635 0.000011 0.288 
W11-25B 50.9 3/8/05 21250 374 8.2 13.9 0.7086373 0.000011 0.274 

*From Hartman et al. (2005) 
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Table 3. 
Well Sample 

Date 
Depth below 

water table, m 

234U/238U x106 ±2σ 235U/238U ±2σ 236U/238U x106 ±2σ 

W10-24 
 

2/7/05 ~0 88.15 
 

0.11 0.0072587 
 

0.0000040 
 

0.348 
 

0.008 
 

W10-28 2/4/05 ~0 74.13 
 

0.08 0.0072468 
 

0.0000034 
 

0.176 
 

0.003 
 

W11-39 2/11/05 ~0 88.72 0.11 0.0072393 
 

0.0000044 
 

0.046 
 

0.003 

W11-25B 2/8/05 11.3 92.28 0.09 0.0072556 
 

0.0000035 
 

0.184 0.006 

W11-25B 2/23/05 29.9 96.49 0.08 0.0072508 
 

0.0000034 
 

0.118 0.003 

W11-25B 2/24/05 36.0 93.51 0.09 0.0072580 
 

0.0000035 
 

0.418 0.005 

 
 


