60 research outputs found

    A Blueberry-Enriched Diet Attenuates Nephropathy in a Rat Model of Hypertension via Reduction in Oxidative Stress

    Get PDF
    To assess renoprotective effects of a blueberry-enriched diet in a rat model of hypertension. Oxidative stress (OS) appears to be involved in the development of hypertension and related renal injury. Pharmacological antioxidants can attenuate hypertension and hypertension-induced renal injury; however, attention has shifted recently to the therapeutic potential of natural products as antioxidants. Blueberries (BB) have among the highest antioxidant capacities of fruits and vegetables.Male spontaneously hypertensive rats received a BB-enriched diet (2% w/w) or an isocaloric control diet for 6 or 12 weeks or 2 days. Compared to controls, rats fed BB-enriched diet for 6 or 12 weeks exhibited lower blood pressure, improved glomerular filtration rate, and decreased renovascular resistance. As measured by electron paramagnetic resonance spectroscopy, significant decreases in total reactive oxygen species (ROS), peroxynitrite, and superoxide production rates were observed in kidney tissues in rats on long-term dietary treatment, consistent with reduced pathology and improved function. Additionally, measures of antioxidant status improved; specifically, renal glutathione and catalase activities increased markedly. Contrasted to these observations indicating reduced OS in the BB group after long-term feeding, similar measurements made in rats fed the same diet for only 2 days yielded evidence of increased OS; specifically, significant increases in total ROS, peroxynitrite, and superoxide production rates in all tissues (kidney, brain, and liver) assayed in BB-fed rats. These results were evidence of "hormesis" during brief exposure, which dissipated with time as indicated by enhanced levels of catalase in heart and liver of BB group.Long-term feeding of BB-enriched diet lowered blood pressure, preserved renal hemodynamics, and improved redox status in kidneys of hypertensive rats and concomitantly demonstrated the potential to delay or attenuate development of hypertension-induced renal injury, and these effects appear to be mediated by a short-term hormetic response

    Do Gene Variants Influencing Adult Adiposity Affect Birth Weight? A Population-Based Study of 24 Loci in 4,744 Danish Individuals

    Get PDF
    Several obesity risk alleles affecting adult adiposity have been identified by the recent wave of genome wide association studies. We aimed to examine the potential effect of these variants on fetal body composition by investigating the variants in relation to birth weight and ponderal index of the newborn.Midwife records from the Danish State Archives provided information on mother's age, parity, as well as birth weight, birth length and prematurity of the newborn in 4,744 individuals of the population-based Inter99 study. Twenty-four risk alleles showing genome-wide associations with adult BMI and/or waist circumference were genotyped. None of the 24 risk variants tested showed an association with birth weight or ponderal index after correction for multiple testing. Birth weight was divided into three categories low (≀10(th) percentile), normal (10(th)-90(th) percentile) and high birth weight (≄90th percentile) to allow for non-linear associations. There was no difference in the number of risk alleles between the groups (p = 0.57). No interactions between each risk allele and birth weight in the prediction of adult BMI were observed. An obesity risk score was created by summing up risk alleles. The risk score did not associate with fetal body composition. Moreover there was no interaction between the risk score and birth weight/ponderal index in the prediction of adult BMI.24 common variants associated with adult adiposity did not affect or interact with birth weight among Danes suggesting that the effects of these variants predominantly arise in the post-natal life

    Genome-wide association analysis identifies six new loci associated with forced vital capacity

    Get PDF
    Forced vital capacity (FVC), a spirometric measure of pulmonary function, reflects lung volume and is used to diagnose and monitor lung diseases. We performed genome-wide association study meta-analysis of FVC in 52,253 individuals from 26 studies and followed up the top associations in 32,917 additional individuals of European ancestry. We found six new regions associated at genome-wide significance (P < 5 × 10−8) with FVC in or near EFEMP1, BMP6, MIR129-2–HSD17B12, PRDM11, WWOX and KCNJ2. Two loci previously associated with spirometric measures (GSTCD and PTCH1) were related to FVC. Newly implicated regions were followed up in samples from African-American, Korean, Chinese and Hispanic individuals. We detected transcripts for all six newly implicated genes in human lung tissue. The new loci may inform mechanisms involved in lung development and the pathogenesis of restrictive lung disease

    GWAS on longitudinal growth traits reveals different genetic factors influencing infant, child, and adult BMI

    Get PDF
    Early childhood growth patterns are associated with adult health, yet the genetic factors and the developmental stages involved are not fully understood. Here, we combine genome-wide association studies with modeling of longitudinal growth traits to study the genetics of infant and child growth, followed by functional, pathway, genetic correlation, risk score, and colocalization analyses to determine how developmental timings, molecular pathways, and genetic determinants of these traits overlap with those of adult health. We found a robust overlap between the genetics of child and adult body mass index (BMI), with variants associated with adult BMI acting as early as 4 to 6 years old. However, we demonstrated a completely distinct genetic makeup for peak BMI during infancy, influenced by variation at the LEPR/LEPROT locus. These findings suggest that different genetic factors control infant and child BMI. In light of the obesity epidemic, these findings are important to inform the timing and targets of prevention strategies.Peer reviewe

    Milk: an epigenetic amplifier of FTO-mediated transcription? Implications for Western diseases

    Full text link

    Finding the missing heritability in pediatric obesity:the contribution of genome-wide complex trait analysis

    Get PDF
    Known single-nucleotide polymorphisms (SNPs) explain 50% heritability from twin and family studies, a phenomenon termed 'missing heritability'. Using DNA alone for unrelated individuals, a novel method (in a software package called Genome-wide Complex Trait Analysis, GCTA) estimates the total additive genetic influence due to common SNPs on whole-genome arrays. GCTA has made major inroads into explaining the 'missing heritability' of BMI in adults. This study provides the first GCTA estimate of genetic influence on adiposity in children. Participants were from the Twins Early Development Study (TEDS), a British twin birth cohort. BMI s.d. scores (BMI-SDS) were obtained from validated parent-reported anthropometric measures when children were about 10 years old (mean=9.9; s.d.=0.84). Selecting one child per family (n=2269), GCTA results from 1.7 million DNA markers were used to quantify the additive genetic influence of common SNPs. For direct comparison, a standard twin analysis in the same families estimated the additive genetic influence as 82% (95% CI: 0.74-0.88,
    • 

    corecore