30 research outputs found

    Thoracic dysfunction in whiplash associated disorders: A systematic review

    Get PDF
    © 2018 Heneghan et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Background Research investigating Whiplash Associated Disorder (WAD) has largely focused on the cervical spine yet symptoms can be widespread. Thoracic spine pain prevalence is reported ~66%; perhaps unsurprising given the forceful stretch/eccentric loading of posterior structures of the spine, and the thoracic spine’s contribution to neck mobility/function. Approximately 50% WAD patients develop chronic pain and disability resulting in high levels of societal and healthcare costs. It is time to look beyond the cervical spine to fully understand anatomical dysfunction in WAD and provide new directions for clinical practice and research. Purpose To evaluate the scope and nature of dysfunction in the thoracic region in patients with WAD. Methods A systematic review and data synthesis was conducted according to a pre-defined, registered (PROSPERO, CRD42015026983) and published protocol. All forms of observational study were included. A sensitive topic-based search strategy was designed from inception to 1/06/16. Databases, grey literature and registers were searched using a study population terms and key words derived from scoping search. Two reviewers independently searched information sources, assessed studies for inclusion, extracted data and assessed risk of bias. A third reviewer checked for consistency and clarity. Extracted data included summary data: sample size and characteristics, outcomes, and timescales to reflect disorder state. Risk of bias was assessed using the Newcastle-Ottawa Scale. Data were tabulated to allow enabling a semi-qualitative comparison and grouped by outcome across studies. Strength of the overall body of evidence was assessed using a modified GRADE. Results Thirty eight studies (n>50,000) which were conducted across a range of countries were included. Few authors responded to requests for further data (5 of 9 contacted). Results were reported in the context of overall quality and were presented for measures of pain or dysfunction and presented, where possible, according to WAD severity and time point post injury. Key findings include: 1) high prevalence of thoracic pain (>60%); higher for those with more severe presentations and in the acute stage, 2) low prevalence of chest pain

    The assessment of neuromuscular fatigue during 120 min of simulated soccer exercise

    Get PDF
    Purpose This investigation examined the development of neuromuscular fatigue during a simulated soccer match incorporating a period of extra time (ET) and the reliability of these responses on repeated test occasions. Methods Ten male amateur football players completed a 120 min soccer match simulation (SMS). Before, at half time (HT), full time (FT), and following a period of ET, twitch responses to supramaximal femoral nerve and transcranial magnetic stimulation (TMS) were obtained from the knee-extensors to measure neuromuscular fatigue. Within 7 days of the first SMS, a second 120 min SMS was performed by eight of the original ten participants to assess the reliability of the fatigue response. Results At HT, FT, and ET, reductions in maximal voluntary force (MVC; −11, −20 and −27%, respectively, P ≤ 0.01), potentiated twitch force (−15, −23 and −23%, respectively, P < 0.05), voluntary activation (FT, −15 and ET, −18%, P ≤ 0.01), and voluntary activation measured with TMS (−11, −15 and −17%, respectively, P ≤ 0.01) were evident. The fatigue response was robust across both trials; the change in MVC at each time point demonstrated a good level of reliability (CV range 6–11%; ICC2,1 0.83–0.94), whilst the responses identified with motor nerve stimulation showed a moderate level of reliability (CV range 5–18%; ICC2,1 0.63–0.89) and the data obtained with motor cortex stimulation showed an excellent level of reliability (CV range 3–6%; ICC2,1 0.90–0.98). Conclusion Simulated soccer exercise induces a significant level of fatigue, which is consistent on repeat tests, and involves both central and peripheral mechanisms

    Network analysis of the transcriptional pattern of young and old cells of Escherichia coli during lag phase

    Get PDF
    Background: The aging process of bacteria in stationary phase is halted if cells are subcultured and enter lag phase and it is then followed by cellular division. Network science has been applied to analyse the transcriptional response, during lag phase, of bacterial cells starved previously in stationary phase for 1 day (young cells) and 16 days (old cells). Results: A genome scale network was constructed for E. coli K-12 by connecting genes with operons, transcription and sigma factors, metabolic pathways and cell functional categories. Most of the transcriptional changes were detected immediately upon entering lag phase and were maintained throughout this period. The lag period was longer for older cells and the analysis of the transcriptome revealed different intracellular activity in young and old cells. The number of genes differentially expressed was smaller in old cells (186) than in young cells (467). Relatively, few genes (62) were up- or down-regulated in both cultures. Transcription of genes related to osmotolerance, acid resistance, oxidative stress and adaptation to other stresses was down-regulated in both young and old cells. Regarding carbohydrate metabolism, genes related to the citrate cycle were up-regulated in young cells while old cells up-regulated the Entner Doudoroff and gluconate pathways and down-regulated the pentose phosphate pathway. In both old and young cells, anaerobic respiration and fermentation pathways were down-regulated, but only young cells up-regulated aerobic respiration while there was no evidence of aerobic respiration in old cells.Numerous genes related to DNA maintenance and replication, translation, ribosomal biosynthesis and RNA processing as well as biosynthesis of the cell envelope and flagellum and several components of the chemotaxis signal transduction complex were up-regulated only in young cells. The genes for several transport proteins for iron compounds were up-regulated in both young and old cells. Numerous genes encoding transporters for carbohydrates and organic alcohols and acids were down-regulated in old cells only. Conclusion: Network analysis revealed very different transcriptional activities during the lag period in old and young cells. Rejuvenation seems to take place during exponential growth by replicative dilution of old cellular components

    Global Analysis of Extracytoplasmic Stress Signaling in Escherichia coli

    Get PDF
    The Bae, Cpx, Psp, Rcs, and σE pathways constitute the Escherichia coli signaling systems that detect and respond to alterations of the bacterial envelope. Contributions of these systems to stress response have previously been examined individually; however, the possible interconnections between these pathways are unknown. Here we investigate the dynamics between the five stress response pathways by determining the specificities of each system with respect to signal-inducing conditions, and monitoring global transcriptional changes in response to transient overexpression of each of the effectors. Our studies show that different extracytoplasmic stress conditions elicit a combined response of these pathways. Involvement of the five pathways in the various tested stress conditions is explained by our unexpected finding that transcriptional responses induced by the individual systems show little overlap. The extracytoplasmic stress signaling pathways in E. coli thus regulate mainly complementary functions whose discrete contributions are integrated to mount the full adaptive response

    AMPA receptor GluA2 subunit defects are a cause of neurodevelopmental disorders.

    Get PDF
    AMPA receptors (AMPARs) are tetrameric ligand-gated channels made up of combinations of GluA1-4 subunits encoded by GRIA1-4 genes. GluA2 has an especially important role because, following post-transcriptional editing at the Q607 site, it renders heteromultimeric AMPARs Ca2+-impermeable, with a linear relationship between current and trans-membrane voltage. Here, we report heterozygous de novo GRIA2 mutations in 28 unrelated patients with intellectual disability (ID) and neurodevelopmental abnormalities including autism spectrum disorder (ASD), Rett syndrome-like features, and seizures or developmental epileptic encephalopathy (DEE). In functional expression studies, mutations lead to a decrease in agonist-evoked current mediated by mutant subunits compared to wild-type channels. When GluA2 subunits are co-expressed with GluA1, most GRIA2 mutations cause a decreased current amplitude and some also affect voltage rectification. Our results show that de-novo variants in GRIA2 can cause neurodevelopmental disorders, complementing evidence that other genetic causes of ID, ASD and DEE also disrupt glutamatergic synaptic transmission

    Repurposing NGO data for better research outcomes: A scoping review of the use and secondary analysis of NGO data in health policy and systems research

    Get PDF
    Background Non-government organisations (NGOs) collect and generate vast amounts of potentially rich data, most of which are not used for research purposes. Secondary analysis of NGO data (their use and analysis in a study for which they were not originally collected) presents an important but largely unrealised opportunity to provide new research insights in critical areas including the evaluation of health policy and programmes. Methods A scoping review of the published literature was performed to identify the extent to which secondary analysis of NGO data has been used in health policy and systems research (HPSR). A tiered analytic approach provided a comprehensive overview and descriptive analyses of the studies which: 1) used data produced or collected by or about NGOs; 2) performed secondary analysis of the NGO data (beyond use of an NGO report as a supporting reference); 3) used NGO-collected clinical data. Results Of the 156 studies which performed secondary analysis of NGO-produced or collected data, 64% (n=100) used NGO-produced reports (e.g. to critique NGO activities and as a contextual reference) and 8% (n=13) analysed NGO-collected clinical data.. Of the studies, 55% investigated service delivery research topics, with 48% undertaken in developing countries and 17% in both developing and developed. NGO-collected clinical data enabled HPSR within marginalised groups (e.g. migrants, people in conflict-affected areas), with some limitations such as inconsistencies and missing data. Conclusion We found evidence that NGO-collected and produced data are most commonly perceived as a source of supporting evidence for HPSR and not as primary source data. However, these data can facilitate research in under-researched marginalised groups and in contexts that are hard to reach by academics, such as conflict-affected areas. NGO–academic collaboration could help address issues of NGO data quality to facilitate their more widespread use in research. Their use could enable relevant and timely research in the areas of health policy, programme evaluation and advocacy to improve health and reduce health inequalities, especially in marginalised groups and developing countries

    What Performance Analysts Need to Know About Research Trends in Association Football (2012–2016): A Systematic Review

    Get PDF
    Evolving patterns of match analysis research need to be systematically reviewed regularly since this area of work is burgeoning rapidly and studies can offer new insights to performance analysts if theoretically and coherently organized

    Network-based proteomic approaches reveal the neurodegenerative, neuroprotective and pain-related mechanisms involved after retrograde axonal damage

    Get PDF
    Neurodegenerative processes are preceded by neuronal dysfunction and synaptic disconnection. Disconnection between spinal motoneuron (MN) soma and synaptic target leads either to a retrograde degenerative process or to a regenerative reaction, depending injury proximity among other factors. Distinguished key events associated with one or other processes may give some clues towards new therapeutical approaches based on boosting endogenous neuroprotective mechanisms. Root mechanical traction leads to retrograde MN degeneration, but share common initial molecular mechanisms with a regenerative process triggered by distal axotomy and suture. By 7 days post-injury, key molecular events starts to diverge and sign apart each destiny. We used comparative unbiased proteomics to define these signatures, coupled to a novel network-based analysis to get biological meaning. The procedure implicated the previous generation of combined topological information from manual curated 19 associated biological processes to be contrasted with the proteomic list using gene enrichment analysis tools. The novel and unexpected results suggested that motoneurodegeneration is better explained mainly by the concomitant triggering of anoikis, anti-apoptotic and neuropathic-pain related programs. In contrast, the endogenous neuroprotective mechanisms engaged after distal axotomy included specifically rather anti-anoikis and selective autophagy. Validated protein-nodes and processes are highlighted across discussion.This work was supported by grants from Fundació La marató-TV3 (#110432) who was funding all the present work and the postdoctoral fellowship of MHG. This work was partially supported by the European commission through the SyStemAge project (Agreement no: 306240). LI is a recipient of a PhD La Caixa fellowship
    corecore