783 research outputs found

    Functional connectivity network between terrestrial and aquatic habitats by a generalist waterbird, and implications for biovectoring

    Get PDF
    Birds are vectors of dispersal of propagules of plants and other organisms including pathogens, as well as nutrients and contaminants. Thus, through their movements they create functional connectivity between habitat patches. Most studies on connectivity provided by animals to date have focused on movements within similar habitat types. However, some waterbirds regularly switch between terrestrial, coastal and freshwater habitats throughout their daily routines. Lesser black-backed gulls that overwinter in Andalusia use different habitat types for roosting and foraging. In order to reveal their potential role in biovectoring among habitats, we created an inter-habitat connectivity network based on GPS tracking data. We applied connectivity measures by considering frequently visited sites as nodes, and flights as links, to determine the strength of connections in the network between habitats, and identify functional units where connections are more likely to happen. We acquired data for 42 tagged individuals (from five breeding colonies), and identified 5676 direct flights that connected 37 nodes. These 37 sites were classified into seven habitat types: reservoirs, natural lakes, ports, coastal marshes, fish ponds, rubbish dumps and ricefields. The Donana ricefields acted as the central node in the network based on centrality measures. Furthermore, during the first half of winter when rice was harvested, ricefields were the most important habitat type in terms of total time spent. Overall, 90% of all direct flights between nodes were between rubbish dumps (for foraging) and roosts in other habitats, thereby connecting terrestrial and various wetland habitats. The strength of connections decreased between nodes as the distance between them increased, and was concentrated within ten independent spatial and functional units, especially between December and February. The pivotal role for ricefields and rubbish dumps in the network, and their high connectivity with aquatic habitats in general, have important implications for biovectoring into their surroundings. (C) 2019 The Authors. Published by Elsevier B.V

    The impact of Cochrane Systematic Reviews : a mixed method evaluation of outputs from Cochrane Review Groups supported by the UK National Institute for Health Research

    Get PDF
    © 2014 Bunn et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.Background: There has been a growing emphasis on evidence-informed decision making in health care. Systematic reviews, such as those produced by the Cochrane Collaboration, have been a key component of this movement. The UK National Institute for Health Research (NIHR) Systematic Review Programme currently supports 20 Cochrane Review Groups (CRGs). The aim of this study was to identify the impacts of Cochrane reviews published by NIHR funded CRGs during the years 2007-11. Methods: We sent questionnaires to CRGs and review authors, interviewed guideline developers and used bibliometrics and documentary review to get an overview of CRG impact and to evaluate the impact of a sample of 60 Cochrane reviews. We used a framework with four categories (knowledge production, research targeting, informing policy development, and impact on practice/services). Results: A total of 1502 new and updated reviews were produced by the 20 NIHR funded CRGs between 2007-11. The clearest impacts were on policy with a total of 483 systematic reviews cited in 247 sets of guidance; 62 were international, 175 national (87 from the UK) and 10 local. Review authors and CRGs provided some examples of impact on practice or services, for example safer use of medication, the identification of new effective drugs or treatments and potential economic benefits through the reduction in the use of unproven or unnecessary procedures. However, such impacts are difficult to objectively document and the majority of reviewers were unsure if their review had produced specific impacts. Qualitative data suggested that Cochrane reviews often play an instrumental role in informing guidance although a poor fit with guideline scope or methods, reviews being out of date and a lack of communication between CRGs and guideline developers were barriers to their use. Conclusions: Health and economic impacts of research are generally difficult to measure. We found that to be the case with this evaluation. Impacts on knowledge production and clinical guidance were easier to identify and substantiate than those on clinical practice. Questions remain about how we define and measure impact and more work is needed to develop suitable methods for impact analysis.Peer reviewe

    Haplotype reference consortium panel: Practical implications of imputations with large reference panels

    Get PDF
    Recently, the Haplotype Reference Consortium (HRC) released a large imputation panel that allows more accurate imputation of genetic variants. In this study, we compared a set of directly assayed common and rare variants from an exome array to imputed genotypes, that is, 1000 genomes project (1000GP) and HRC. We showed that imputation using the HRC panel improved the concordance between assayed and imputed genotypes at common, and especially, low-frequency variants. Furthermore, we performed a genome-wide association meta-analysis of vertical cup-disc ratio, a highly heritable endophenotype of glaucoma, in four cohorts using 1000GP and HRC imputations. We compared the results of the meta-analysis using 1000GP to the meta-analysis results using HRC. Overall, we found that using HRC imputation significantly improved P values (P = 3.07 × 10(-61) ), particularly for suggestive variants. Both meta-analyses were performed in the same sample size, yet we found eight genome-wide significant loci in the HRC-based meta-analysis versus seven genome-wide significant loci in the 1000GP-based meta-analysis. This study provides supporting evidence of the new avenues for gene discovery and fine mapping that the HRC imputation panel offers

    Functional Diversity and Structural Disorder in the Human Ubiquitination Pathway

    Get PDF
    The ubiquitin-proteasome system plays a central role in cellular regulation and protein quality control (PQC). The system is built as a pyramid of increasing complexity, with two E1 (ubiquitin activating), few dozen E2 (ubiquitin conjugating) and several hundred E3 (ubiquitin ligase) enzymes. By collecting and analyzing E3 sequences from the KEGG BRITE database and literature, we assembled a coherent dataset of 563 human E3s and analyzed their various physical features. We found an increase in structural disorder of the system with multiple disorder predictors (IUPred - E1: 5.97%, E2: 17.74%, E3: 20.03%). E3s that can bind E2 and substrate simultaneously (single subunit E3, ssE3) have significantly higher disorder (22.98%) than E3s in which E2 binding (multi RING-finger, mRF, 0.62%), scaffolding (6.01%) and substrate binding (adaptor/substrate recognition subunits, 17.33%) functions are separated. In ssE3s, the disorder was localized in the substrate/adaptor binding domains, whereas the E2-binding RING/HECT-domains were structured. To demonstrate the involvement of disorder in E3 function, we applied normal modes and molecular dynamics analyses to show how a disordered and highly flexible linker in human CBL (an E3 that acts as a regulator of several tyrosine kinase-mediated signalling pathways) facilitates long-range conformational changes bringing substrate and E2-binding domains towards each other and thus assisting in ubiquitin transfer. E3s with multiple interaction partners (as evidenced by data in STRING) also possess elevated levels of disorder (hubs, 22.90% vs. non-hubs, 18.36%). Furthermore, a search in PDB uncovered 21 distinct human E3 interactions, in 7 of which the disordered region of E3s undergoes induced folding (or mutual induced folding) in the presence of the partner. In conclusion, our data highlights the primary role of structural disorder in the functions of E3 ligases that manifests itself in the substrate/adaptor binding functions as well as the mechanism of ubiquitin transfer by long-range conformational transitions. © 2013 Bhowmick et al

    Chaste: an open source C++ library for computational physiology and biology

    Get PDF
    Chaste - Cancer, Heart And Soft Tissue Environment - is an open source C++ library for the computational simulation of mathematical models developed for physiology and biology. Code development has been driven by two initial applications: cardiac electrophysiology and cancer development. A large number of cardiac electrophysiology studies have been enabled and performed, including high performance computational investigations of defibrillation on realistic human cardiac geometries. New models for the initiation and growth of tumours have been developed. In particular, cell-based simulations have provided novel insight into the role of stem cells in the colorectal crypt. Chaste is constantly evolving and is now being applied to a far wider range of problems. The code provides modules for handling common scientific computing components, such as meshes and solvers for ordinary and partial differential equations (ODEs/PDEs). Re-use of these components avoids the need for researchers to "re-invent the wheel" with each new project, accelerating the rate of progress in new applications. Chaste is developed using industrially-derived techniques, in particular test-driven development, to ensure code quality, re-use and reliability. In this article we provide examples that illustrate the types of problems Chaste can be used to solve, which can be run on a desktop computer. We highlight some scientific studies that have used or are using Chaste, and the insights they have provided. The source code, both for specific releases and the development version, is available to download under an open source Berkeley Software Distribution (BSD) licence at http://www.cs.ox.ac.uk/chaste, together with details of a mailing list and links to documentation and tutorials

    Metformin as an Adjunctive Therapy for Pancreatic Cancer: A Review of the Literature on Its Potential Therapeutic Use

    Get PDF
    Pancreatic ductal adenocarcinoma has the worst prognosis of any cancer. New adjuvant chemotherapies are urgently required, which are well tolerated by patients with unresectable cancers. This paper reviews the existing proof of concept data, namely laboratory, pharmacoepidemiological, experimental medicine and clinical trial evidence for investigating metformin in patients with pancreatic ductal adenocarcinoma. Laboratory evidence shows metformin inhibits mitochondrial ATP synthesis which directly and indirectly inhibits carcinogenesis. Drug–drug interactions of metformin with proton pump inhibitors and histamine H2-receptor antagonists may be of clinical relevance and pertinent to future research of metformin in pancreatic ductal adenocarcinoma. To date, most cohort studies have demonstrated a positive association with metformin on survival in pancreatic ductal adenocarcinoma, although there are many methodological limitations with such study designs. From experimental medicine studies, there are sparse data in humans. The current trials of metformin have methodological limitations. Two small randomized controlled trials (RCTs) reported null findings, but there were potential inequalities in cancer staging between groups and poor compliance with the intervention. Proof of concept data, predominantly from laboratory work, supports assessing metformin as an adjunct for pancreatic ductal adenocarcinoma in RCTs. Ideally, more experimental medicine studies are needed for proof of concept. However, many feasibility criteria need to be answered before such trials can progress

    Empirical estimates of prostate cancer overdiagnosis by age and prostate-specific antigen

    Get PDF
    Background: Prostate cancer screening depends on a careful balance of benefits, in terms of reduced prostate cancer mortality, and harms, in terms of overdiagnosis and overtreatment. We aimed to estimate the effect on overdiagnosis of restricting prostate specific antigen (PSA) testing by age and baseline PSA.Methods: Estimates of the effects of age on overdiagnosis were based on population based incidence data from the US Surveillance, Epidemiology and End Results database. To investigate the relationship between PSA and overdiagnosis, we used two separate cohorts subject to PSA testing in clinical trials (n = 1,577 and n = 1,197) and a population-based cohort of Swedish men not subject to PSA-screening followed for 25 years (n = 1,162).Results: If PSA testing had been restricted to younger men, the number of excess cases associated with the introduction of PSA in the US would have been reduced by 85%, 68% and 42% for age cut-offs of 60, 65 and 70, respectively. The risk that a man with screen-detected cancer at age 60 would not subsequently lead to prostate cancer morbidity or mortality decreased exponentially as PSA approached conventional biopsy thresholds. For PSAs below 1 ng/ml, the risk of a positive biopsy is 65 (95% CI 18.2, 72.9) times greater than subsequent prostate cancer mortality.Conclusions: Prostate cancer overdiagnosis has a strong relationship to age and PSA level. Restricting screening in men over 60 to those with PSA above median (>1 ng/ml) and screening men over 70 only in selected circumstances would importantly reduce overdiagnosis and change the ratio of benefits to harms of PSA-screening

    Chromosome-Biased Binding and Gene Regulation by the Caenorhabditis elegans DRM Complex

    Get PDF
    DRM is a conserved transcription factor complex that includes E2F/DP and pRB family proteins and plays important roles in development and cancer. Here we describe new aspects of DRM binding and function revealed through genome-wide analyses of the Caenorhabditis elegans DRM subunit LIN-54. We show that LIN-54 DNA-binding activity recruits DRM to promoters enriched for adjacent putative E2F/DP and LIN-54 binding sites, suggesting that these two DNA–binding moieties together direct DRM to its target genes. Chromatin immunoprecipitation and gene expression profiling reveals conserved roles for DRM in regulating genes involved in cell division, development, and reproduction. We find that LIN-54 promotes expression of reproduction genes in the germline, but prevents ectopic activation of germline-specific genes in embryonic soma. Strikingly, C. elegans DRM does not act uniformly throughout the genome: the DRM recruitment motif, DRM binding, and DRM-regulated embryonic genes are all under-represented on the X chromosome. However, germline genes down-regulated in lin-54 mutants are over-represented on the X chromosome. We discuss models for how loss of autosome-bound DRM may enhance germline X chromosome silencing. We propose that autosome-enriched binding of DRM arose in C. elegans as a consequence of germline X chromosome silencing and the evolutionary redistribution of germline-expressed and essential target genes to autosomes. Sex chromosome gene regulation may thus have profound evolutionary effects on genome organization and transcriptional regulatory networks.National Institutes of Health (U.S.) (grant GM24663)National Institutes of Health (U.S.) (grant DK068429)National Institutes of Health (U.S.) (grant GM082971)National Institutes of Health (U.S.) (grant GM076378
    corecore