310 research outputs found

    Exponential Random Graph Modeling for Complex Brain Networks

    Get PDF
    Exponential random graph models (ERGMs), also known as p* models, have been utilized extensively in the social science literature to study complex networks and how their global structure depends on underlying structural components. However, the literature on their use in biological networks (especially brain networks) has remained sparse. Descriptive models based on a specific feature of the graph (clustering coefficient, degree distribution, etc.) have dominated connectivity research in neuroscience. Corresponding generative models have been developed to reproduce one of these features. However, the complexity inherent in whole-brain network data necessitates the development and use of tools that allow the systematic exploration of several features simultaneously and how they interact to form the global network architecture. ERGMs provide a statistically principled approach to the assessment of how a set of interacting local brain network features gives rise to the global structure. We illustrate the utility of ERGMs for modeling, analyzing, and simulating complex whole-brain networks with network data from normal subjects. We also provide a foundation for the selection of important local features through the implementation and assessment of three selection approaches: a traditional p-value based backward selection approach, an information criterion approach (AIC), and a graphical goodness of fit (GOF) approach. The graphical GOF approach serves as the best method given the scientific interest in being able to capture and reproduce the structure of fitted brain networks

    Statistical Inference for Valued-Edge Networks: Generalized Exponential Random Graph Models

    Get PDF
    Across the sciences, the statistical analysis of networks is central to the production of knowledge on relational phenomena. Because of their ability to model the structural generation of networks, exponential random graph models are a ubiquitous means of analysis. However, they are limited by an inability to model networks with valued edges. We solve this problem by introducing a class of generalized exponential random graph models capable of modeling networks whose edges are valued, thus greatly expanding the scope of networks applied researchers can subject to statistical analysis

    Stochastic Blockmodeling for the Analysis of Big Data

    Get PDF
    The aim of this paper is to consider the stochastic blockmodel to obtain clusters of units as regards patterns of similar relations; moreover we want to analyze the relations between clusters. Blockmodeling is a technique usually applied in social network analysis focusing on the relations between \u201cactors\u201d i.e. units. In our time people and devices constantly generate data. The network is generating location and other data that keeps services running and ready to use in every moment. This rapid development in the availability and access to data has induced the need for better analysis techniques to understand the various phenomena. Blockmodeling techniques and Clustering algorithms, can be used for this aim. In this paper application regards the Web

    Are Happiness and Life Satisfaction Different Across Religious groups? Exploring Determinants of Happiness and Life Satisfaction

    Get PDF
    This study explores whether different religions experience different levels of happiness and life satisfaction and in case this is affected by country economic and cultural environment. Using World Value Survey (from 1981 to 2014), this study found that individual religiosity and country level of development play a significant role in shaping people’s subjective well-being (SWB). Protestants, Buddhists and Roman Catholic were happier and most satisfied with their lives compared to other religious groups. Orthodox has the lowest SWB. Health status, household’s financial satisfaction and freedom of choice are means by which religious groups and governments across the globe can improve the SWB of their citizens. Keywords: happiness; life satisfaction; religion; religious differences; cultur

    Measuring affective well-being at work using short-form scales : implications for affective structures and participant instructions

    Get PDF
    Measuring affective well-being in organizational studies has become increasingly widespread, given its association with key work-performance and other markers of organizational functioning. As such, researchers and policy-makers need to be confident that well-being measures are valid, reliable and robust. To reduce the burden on participants in applied settings, short-form measures of affective well-being are proving popular. However, these scales are seldom validated as standalone, comprehensive measures in their own right. In this article, we used a short-form measure of affective well-being with 10 items: the Daniels five-factor measure of affective well-being (D-FAW). In Study 1, across six applied sample groups (N = 2624), we found that the factor structure of the short-form D-FAW is robust when issued as a standalone measure, and that it should be scored differently depending on the participant instruction used. When participant instructions focus on now or today, then affect is best represented by five discrete emotion factors. When participant instructions focus on the past week, then affect is best represented by two or three mood-based factors. In Study 2 (N = 39), we found good construct convergent validity of short-form D-FAW with another widely used scale (PANAS). Implications for the measurement and structure of affect are discussed

    Plasticity of the Muscle Stem Cell Microenvironment

    Get PDF
    Satellite cells (SCs) are adult muscle stem cells capable of repairing damaged and creating new muscle tissue throughout life. Their functionality is tightly controlled by a microenvironment composed of a wide variety of factors, such as numerous secreted molecules and different cell types, including blood vessels, oxygen, hormones, motor neurons, immune cells, cytokines, fibroblasts, growth factors, myofibers, myofiber metabolism, the extracellular matrix and tissue stiffness. This complex niche controls SC biology-quiescence, activation, proliferation, differentiation or renewal and return to quiescence. In this review, we attempt to give a brief overview of the most important players in the niche and their mutual interaction with SCs. We address the importance of the niche to SC behavior under physiological and pathological conditions, and finally survey the significance of an artificial niche both for basic and translational research purposes

    Genetic variation and exercise-induced muscle damage: implications for athletic performance, injury and ageing.

    Get PDF
    Prolonged unaccustomed exercise involving muscle lengthening (eccentric) actions can result in ultrastructural muscle disruption, impaired excitation-contraction coupling, inflammation and muscle protein degradation. This process is associated with delayed onset muscle soreness and is referred to as exercise-induced muscle damage. Although a certain amount of muscle damage may be necessary for adaptation to occur, excessive damage or inadequate recovery from exercise-induced muscle damage can increase injury risk, particularly in older individuals, who experience more damage and require longer to recover from muscle damaging exercise than younger adults. Furthermore, it is apparent that inter-individual variation exists in the response to exercise-induced muscle damage, and there is evidence that genetic variability may play a key role. Although this area of research is in its infancy, certain gene variations, or polymorphisms have been associated with exercise-induced muscle damage (i.e. individuals with certain genotypes experience greater muscle damage, and require longer recovery, following strenuous exercise). These polymorphisms include ACTN3 (R577X, rs1815739), TNF (-308 G>A, rs1800629), IL6 (-174 G>C, rs1800795), and IGF2 (ApaI, 17200 G>A, rs680). Knowing how someone is likely to respond to a particular type of exercise could help coaches/practitioners individualise the exercise training of their athletes/patients, thus maximising recovery and adaptation, while reducing overload-associated injury risk. The purpose of this review is to provide a critical analysis of the literature concerning gene polymorphisms associated with exercise-induced muscle damage, both in young and older individuals, and to highlight the potential mechanisms underpinning these associations, thus providing a better understanding of exercise-induced muscle damage

    Societal-level versus individual-level predictions of ethical behavior: a 48-society study of collectivism and individualism

    Get PDF
    Is the societal-level of analysis sufficient today to understand the values of those in the global workforce? Or are individual-level analyses more appropriate for assessing the influence of values on ethical behaviors across country workforces? Using multi-level analyses for a 48-society sample, we test the utility of both the societal-level and individual-level dimensions of collectivism and individualism values for predicting ethical behaviors of business professionals. Our values-based behavioral analysis indicates that values at the individual-level make a more significant contribution to explaining variance in ethical behaviors than do values at the societal-level. Implicitly, our findings question the soundness of using societal-level values measures. Implications for international business research are discussed

    A new classification method using array Comparative Genome Hybridization data, based on the concept of Limited Jumping Emerging Patterns

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Classification using aCGH data is an important and insufficiently investigated problem in bioinformatics. In this paper we propose a new classification method of DNA copy number data based on the concept of limited Jumping Emerging Patterns. We present the comparison of our limJEPClassifier to SVM which is considered the most successful classifier in the case of high-throughput data.</p> <p>Results</p> <p>Our results revealed that the classification performance using limJEPClassifier is significantly higher than other methods. Furthermore, we show that application of the limited JEP's can significantly improve classification, when strongly unbalanced data are given.</p> <p>Conclusion</p> <p>Nowadays, aCGH has become a very important tool, used in research of cancer or genomic disorders. Therefore, improving classification of aCGH data can have a great impact on many medical issues such as the process of diagnosis and finding disease-related genes. The performed experiment shows that the application of Jumping Emerging Patterns can be effective in the classification of high-dimensional data, including these from aCGH experiments.</p
    corecore