10 research outputs found

    Triad pattern algorithm for predicting strong promoter candidates in bacterial genomes

    Get PDF
    Abstract Background Bacterial promoters, which increase the efficiency of gene expression, differ from other promoters by several characteristics. This difference, not yet widely exploited in bioinformatics, looks promising for the development of relevant computational tools to search for strong promoters in bacterial genomes. Results We describe a new triad pattern algorithm that predicts strong promoter candidates in annotated bacterial genomes by matching specific patterns for the group I σ70 factors of Escherichia coli RNA polymerase. It detects promoter-specific motifs by consecutively matching three patterns, consisting of an UP-element, required for interaction with the α subunit, and then optimally-separated patterns of -35 and -10 boxes, required for interaction with the σ70 subunit of RNA polymerase. Analysis of 43 bacterial genomes revealed that the frequency of candidate sequences depends on the A+T content of the DNA under examination. The accuracy of in silico prediction was experimentally validated for the genome of a hyperthermophilic bacterium, Thermotoga maritima, by applying a cell-free expression assay using the predicted strong promoters. In this organism, the strong promoters govern genes for translation, energy metabolism, transport, cell movement, and other as-yet unidentified functions. Conclusion The triad pattern algorithm developed for predicting strong bacterial promoters is well suited for analyzing bacterial genomes with an A+T content of less than 62%. This computational tool opens new prospects for investigating global gene expression, and individual strong promoters in bacteria of medical and/or economic significance.</p

    Stoffwechsel organischer Verbindungen II

    No full text

    The complete genome sequence of the algal symbiont Dinoroseobacter shibae: a hitchhiker s guide to life in the sea

    No full text

    Die myatrophische Lateralsklerose

    No full text

    Encephalomyelitis disseminata non purulenta acuta (Akute multiple Sklerose)

    No full text

    Mechanisms of Lymphocyte Transformation

    No full text

    Bibliography

    No full text

    Intoxikationen

    No full text

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    No full text
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field
    corecore