98 research outputs found

    Enterococcal colonization of infants in a neonatal intensive care unit: associated predictors, risk factors and seasonal patterns

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>During and shortly after birth, newborn infants are colonized with enterococci. This study analyzes predictors for early enterococcal colonization of infants in a neonatal intensive care unit and describes risk factors associated with multidrugresistant enterococci colonization and its seasonal patterns.</p> <p>Methods</p> <p>Over a 12-month period, we performed a prospective epidemiological study in 274 infants admitted to a neonatal intensive care unit. On the first day of life, we compared infants with enterococcal isolates detected in meconium or body cultures to those without. We then tested the association of enterococcal colonization with peripartal predictors/risk factors by using bivariate and multivariate statistical methods.</p> <p>Results</p> <p>Twenty-three percent of the infants were colonized with enterococci. The three most common enterococcal species were <it>E. faecium </it>(48% of isolates), <it>E. casseliflavus </it>(25%) and <it>E. faecalis </it>(13%). Fifty-seven percent of the enterococci found were resistant to three of five antibiotic classes, but no vancomycin-resistant isolates were observed. During winter/spring months, the number of enterococci and multidrug-resistant enterococci were higher than in summer/fall months (p = 0.002 and p < 0.0001, respectively). With respect to enterococcal colonization on the first day of life, predictors were prematurity (p = 0.043) and low birth weight (p = 0.011). With respect to colonization with multidrug-resistant enterococci, risk factors were prematurity (p = 0.0006), low birth weight (p < 0.0001) and prepartal antibiotic treatment (p = 0.019). Using logistic regression, we determined that gestational age was the only parameter significantly correlated with multidrug-resistant enterococci colonization. No infection with enterococci or multidrugresistant enterococci in the infants was detected. The outcome of infants with and without enterococcal colonization was the same with respect to death, necrotizing enterocolitis, intracerebral hemorrhage and bronchopulmonary dysplasia.</p> <p>Conclusion</p> <p>In neonatal intensive care units, an infant's susceptibility to early colonization with enterococci in general, and his or her risk for colonization with multidrug-resistant enterococci in particular, is increased in preterm newborns, especially during the winter/spring months. The prepartal use of antibiotics with no known activity against enterococci appears to increase the risk for colonization with multidrug-resistant enterococci.</p

    Systematic review of reduced therapy regimens for children with low risk febrile neutropenia

    Get PDF
    PURPOSE: Reduced intensity therapy for children with low-risk febrile neutropenia may provide benefits to both patients and the health service. We have explored the safety of these regimens and the effect of timing of discharge. METHODS: Multiple electronic databases, conference abstracts and reference lists were searched. Randomised controlled trials (RCT) and prospective observational cohorts examining the location of therapy and/or the route of administration of antibiotics in people younger than 18 years who developed low-risk febrile neutropenia following treatment for cancer were included. Meta-analysis using a random effects model was conducted. I (2) assessed statistical heterogeneity not due to chance. Registration: PROSPERO (CRD42014005817). RESULTS: Thirty-seven studies involving 3205 episodes of febrile neutropenia were included; 13 RCTs and 24 prospective observational cohorts. Four safety events (two deaths, two intensive care admissions) occurred. In the RCTs, the odds ratio for treatment failure (persistence, worsening or recurrence of fever/infecting organisms, antibiotic modification, new infections, re-admission, admission to critical care or death) with outpatient treatment was 0.98 (95% confidence interval (95%CI) 0.44-2.19, I (2) = 0 %) and with oral treatment was 1.05 (95%CI 0.74-1.48, I (2) = 0 %). The estimated risk of failure using outpatient therapy from all prospective data pooled was 11.2 % (95%CI 9.7-12.8 %, I (2) = 77.2 %) and using oral antibiotics was 10.5 % (95%CI 8.9-12.3 %, I (2) = 78.3 %). The risk of failure was higher when reduced intensity therapies were used immediately after assessment, with lower rates when these were introduced after 48 hours. CONCLUSIONS: Reduced intensity therapy for specified groups is safe with low rates of treatment failure. Services should consider how these can be acceptably implemented

    Identification of regulatory variants associated with genetic susceptibility to meningococcal disease.

    Get PDF
    Non-coding genetic variants play an important role in driving susceptibility to complex diseases but their characterization remains challenging. Here, we employed a novel approach to interrogate the genetic risk of such polymorphisms in a more systematic way by targeting specific regulatory regions relevant for the phenotype studied. We applied this method to meningococcal disease susceptibility, using the DNA binding pattern of RELA - a NF-kB subunit, master regulator of the response to infection - under bacterial stimuli in nasopharyngeal epithelial cells. We designed a custom panel to cover these RELA binding sites and used it for targeted sequencing in cases and controls. Variant calling and association analysis were performed followed by validation of candidate polymorphisms by genotyping in three independent cohorts. We identified two new polymorphisms, rs4823231 and rs11913168, showing signs of association with meningococcal disease susceptibility. In addition, using our genomic data as well as publicly available resources, we found evidences for these SNPs to have potential regulatory effects on ATXN10 and LIF genes respectively. The variants and related candidate genes are relevant for infectious diseases and may have important contribution for meningococcal disease pathology. Finally, we described a novel genetic association approach that could be applied to other phenotypes

    Volume III. DUNE far detector technical coordination

    Get PDF
    open966siAcknowledgments This document was prepared by the DUNE collaboration using the resources of the Fermi National Accelerator Laboratory (Fermilab), a U.S. Department of Energy, Office of Science, HEP User Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359. The DUNE collaboration also acknowledges the international, national, and regional funding agencies supporting the institutions who have contributed to completing this Technical Design Report.The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay-these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. The Deep Underground Neutrino Experiment (DUNE) is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector technical design report (TDR) describes the DUNE physics program and the technical designs of the single- A nd dual-phase DUNE liquid argon TPC far detector modules. Volume III of this TDR describes how the activities required to design, construct, fabricate, install, and commission the DUNE far detector modules are organized and managed. This volume details the organizational structures that will carry out and/or oversee the planned far detector activities safely, successfully, on time, and on budget. It presents overviews of the facilities, supporting infrastructure, and detectors for context, and it outlines the project-related functions and methodologies used by the DUNE technical coordination organization, focusing on the areas of integration engineering, technical reviews, quality assurance and control, and safety oversight. Because of its more advanced stage of development, functional examples presented in this volume focus primarily on the single-phase (SP) detector module.openAbi B.; Acciarri R.; Acero M.A.; Adamov G.; Adams D.; Adinolfi M.; Ahmad Z.; Ahmed J.; Alion T.; Monsalve S.A.; Alt C.; Anderson J.; Andreopoulos C.; Andrews M.; Andrianala F.; Andringa S.; Ankowski A.; Antonova M.; Antusch S.; Aranda-Fernandez A.; Ariga A.; Arnold L.O.; Arroyave M.A.; Asaadi J.; Aurisano A.; Aushev V.; Autiero D.; Azfar F.; Back H.; Back J.J.; Backhouse C.; Baesso P.; Bagby L.; Bajou R.; Balasubramanian S.; Baldi P.; Bambah B.; Barao F.; Barenboim G.; Barker G.; Barkhouse W.; Barnes C.; Barr G.; Monarca J.B.; Barros N.; Barrow J.L.; Bashyal A.; Basque V.; Bay F.; Alba J.B.; Beacom J.F.; Bechetoille E.; Behera B.; Bellantoni L.; Bellettini G.; Bellini V.; Beltramello O.; Belver D.; Benekos N.; Neves F.B.; Berger J.; Berkman S.; Bernardini P.; Berner R.M.; Berns H.; Bertolucci S.; Betancourt M.; Bezawada Y.; Bhattacharjee M.; Bhuyan B.; Biagi S.; Bian J.; Biassoni M.; Biery K.; Bilki B.; Bishai M.; Bitadze A.; Blake A.; Siffert B.B.; Blaszczyk F.; Blazey G.; Blucher E.; Boissevain J.; Bolognesi S.; Bolton T.; Bonesini M.; Bongrand M.; Bonini F.; Booth A.; Booth C.; Bordoni S.; Borkum A.; Boschi T.; Bostan N.; Bour P.; Boyd S.; Boyden D.; Bracinik J.; Braga D.; Brailsford D.; Brandt A.; Bremer J.; Brew C.; Brianne E.; Brice S.J.; Brizzolari C.; Bromberg C.; Brooijmans G.; Brooke J.; Bross A.; Brunetti G.; Buchanan N.; Budd H.; Caiulo D.; Calafiura P.; Calcutt J.; Calin M.; Calvez S.; Calvo E.; Camilleri L.; Caminata A.; Campanelli M.; Caratelli D.; Carini G.; Carlus B.; Carniti P.; Terrazas I.C.; Carranza H.; Castillo A.; Castromonte C.; Cattadori C.; Cavalier F.; Cavanna F.; Centro S.; Cerati G.; Cervelli A.; Villanueva A.C.; Chalifour M.; Chang C.; Chardonnet E.; Chatterjee A.; Chattopadhyay S.; Chaves J.; Chen H.; Chen M.; Chen Y.; Cherdack D.; Chi C.; Childress S.; Chiriacescu A.; Cho K.; Choubey S.; Christensen A.; Christian D.; Christodoulou G.; Church E.; Clarke P.; Coan T.E.; Cocco A.G.; Coelho J.; Conley E.; Conrad J.; Convery M.; Corwin L.; Cotte P.; Cremaldi L.; Cremonesi L.; Crespo-Anadon J.I.; Cristaldo E.; Cross R.; Cuesta C.; Cui Y.; Cussans D.; Dabrowski M.; Motta H.D.; Peres L.D.S.; David Q.; Davies G.S.; Davini S.; Dawson J.; De K.; Almeida R.M.D.; Debbins P.; Bonis I.D.; Decowski M.; Gouvea A.D.; Holanda P.C.D.; Astiz I.L.D.I.; Deisting A.; Jong P.D.; Delbart A.; Delepine D.; Delgado M.; Dell'acqua A.; Lurgio P.D.; Neto J.R.D.M.; Demuth D.M.; Dennis S.; Densham C.; Deptuch G.; Roeck A.D.; Romeri V.D.; Vries J.D.; Dharmapalan R.; Dias M.; Diaz F.; Diaz J.; Domizio S.D.; Giulio L.D.; Ding P.; Noto L.D.; Distefano C.; Diurba R.; Diwan M.; Djurcic Z.; Dokania N.; Dolinski M.; Domine L.; Douglas D.; Drielsma F.; Duchesneau D.; Duffy K.; Dunne P.; Durkin T.; Duyang H.; Dvornikov O.; Dwyer D.; Dyshkant A.; Eads M.; Edmunds D.; Eisch J.; Emery S.; Ereditato A.; Escobar C.; Sanchez L.E.; Evans J.J.; Ewart E.; Ezeribe A.C.; Fahey K.; Falcone A.; Farnese C.; Farzan Y.; Felix J.; Fernandez-Martinez E.; Menendez P.F.; Ferraro F.; Fields L.; Filkins A.; Filthaut F.; Fitzpatrick R.S.; Flanagan W.; Fleming B.; Flight R.; Fowler J.; Fox W.; Franc J.; Francis K.; Franco D.; Freeman J.; Freestone J.; Fried J.; Friedland A.; Fuess S.; Furic I.; Furmanski A.P.; Gago A.; Gallagher H.; Gallego-Ros A.; Gallice N.; Galymov V.; Gamberini E.; Gamble T.; Gandhi R.; Gandrajula R.; Gao S.; Garcia-Gamez D.; Garcia-Peris M.A.; Gardiner S.; Gastler D.; Ge G.; Gelli B.; Gendotti A.; Gent S.; Ghorbani-Moghaddam Z.; Gibin D.; Gil-Botella I.; Girerd C.; Giri A.; Gnani D.; Gogota O.; Gold M.; Gollapinni S.; Gollwitzer K.; Gomes R.A.; Bermeo L.G.; Fajardo L.S.G.; Gonnella F.; Gonzalez-Cuevas J.; Goodman M.C.; Goodwin O.; Goswami S.; Gotti C.; Goudzovski E.; Grace C.; Graham M.; Gramellini E.; Gran R.; Granados E.; Grant A.; Grant C.; Gratieri D.; Green P.; Green S.; Greenler L.; Greenwood M.; Greer J.; Griffith C.; Groh M.; Grudzinski J.; Grzelak K.; Gu W.; Guarino V.; Guenette R.; Guglielmi A.; Guo B.; Guthikonda K.; Gutierrez R.; Guzowski P.; Guzzo M.M.; Gwon S.; Habig A.; Hackenburg A.; Hadavand H.; Haenni R.; Hahn A.; Haigh J.; Haiston J.; Hamernik T.; Hamilton P.; Han J.; Harder K.; Harris D.A.; Hartnell J.; Hasegawa T.; Hatcher R.; Hazen E.; Heavey A.; Heeger K.M.; Hennessy K.; Henry S.; Morquecho M.H.; Herner K.; Hertel L.; Hesam A.S.; Hewes J.; Pichardo A.H.; Hill T.; Hillier S.J.; Himmel A.; Hoff J.; Hohl C.; Holin A.; Hoppe E.; Horton-Smith G.A.; Hostert M.; Hourlier A.; Howard B.; Howell R.; Huang J.; Huang J.; Hugon J.; Iles G.; Iliescu A.M.; Illingworth R.; Ioannisian A.; Itay R.; Izmaylov A.; James E.; Jargowsky B.; Jediny F.; Jesus-Valls C.; Ji X.; Jiang L.; Jimenez S.; Jipa A.; Joglekar A.; Johnson C.; Johnson R.; Jones B.; Jones S.; Jung C.; Junk T.; Jwa Y.; Kabirnezhad M.; Kaboth A.; Kadenko I.; Kamiya F.; Karagiorgi G.; Karcher A.; Karolak M.; Karyotakis Y.; Kasai S.; Kasetti S.P.; Kashur L.; Kazaryan N.; Kearns E.; Keener P.; Kelly K.J.; Kemp E.; Ketchum W.; Kettell S.; Khabibullin M.; Khotjantsev A.; Khvedelidze A.; Kim D.; King B.; Kirby B.; Kirby M.; Klein J.; Koehler K.; Koerner L.W.; Kohn S.; Koller P.P.; Kordosky M.; Kosc T.; Kose U.; Kostelecky V.; Kothekar K.; Krennrich F.; Kreslo I.; Kudenko Y.; Kudryavtsev V.; Kulagin S.; Kumar J.; Kumar R.; Kuruppu C.; Kus V.; Kutter T.; Lambert A.; Lande K.; Lane C.E.; Lang K.; Langford T.; Lasorak P.; Last D.; Lastoria C.; Laundrie A.; Lawrence A.; Lazanu I.; Lazur R.; Le T.; Learned J.; Lebrun P.; Miotto G.L.; Lehnert R.; De Oliveira M.L.; Leitner M.; Leyton M.; Li L.; Li S.; Li S.; Li T.; Li Y.; Liao H.; Lin C.; Lin S.; Lister A.; Littlejohn B.R.; Liu J.; Lockwitz S.; Loew T.; Lokajicek M.; Lomidze I.; Long K.; Loo K.; Lorca D.; Lord T.; Losecco J.; Louis W.C.; Luk K.; Luo X.; Lurkin N.; Lux T.; Luzio V.P.; MacFarland D.; MacHado A.; MacHado P.; MacIas C.; MacIer J.; Maddalena A.; Madigan P.; Magill S.; Mahn K.; Maio A.; Maloney J.A.; Mandrioli G.; Maneira J.C.; Manenti L.; Manly S.; Mann A.; Manolopoulos K.; Plata M.M.; Marchionni A.; Marciano W.; Marfatia D.; Mariani C.; Maricic J.; Marinho F.; Marino A.D.; Marshak M.; Marshall C.; Marshall J.; Marteau J.; Martin-Albo J.; Martinez N.; Caicedo D.A.M.; Martynenko S.; Mason K.; Mastbaum A.; Masud M.; Matsuno S.; Matthews J.; Mauger C.; Mauri N.; Mavrokoridis K.; Mazza R.; Mazzacane A.; Mazzucato E.; McCluskey E.; McConkey N.; McFarland K.S.; McGrew C.; McNab A.; Mefodiev A.; Mehta P.; Melas P.; Mellinato M.; Mena O.; Menary S.; Mendez H.; Menegolli A.; Meng G.; Messier M.; Metcalf W.; Mewes M.; Meyer H.; Miao T.; Michna G.; Miedema T.; Migenda J.; Milincic R.; Miller W.; Mills J.; Milne C.; Mineev O.; Miranda O.G.; Miryala S.; Mishra C.; Mishra S.; Mislivec A.; Mladenov D.; Mocioiu I.; Moffat K.; Moggi N.; Mohanta R.; Mohayai T.A.; Mokhov N.; Molina J.A.; Bueno L.M.; Montanari A.; Montanari C.; Montanari D.; Zetina L.M.M.; Moon J.; Mooney M.; Moor A.; Moreno D.; Morgan B.; Morris C.; Mossey C.; Motuk E.; Moura C.A.; Mousseau J.; Mu W.; Mualem L.; Mueller J.; Muether M.; Mufson S.; Muheim F.; Muir A.; Mulhearn M.; Muramatsu H.; Murphy S.; Musser J.; Nachtman J.; Nagu S.; Nalbandyan M.; Nandakumar R.; Naples D.; Narita S.; Navas-Nicolas D.; Nayak N.; Nebot-Guinot M.; Necib L.; Negishi K.; Nelson J.K.; Nesbit J.; Nessi M.; Newbold D.; Newcomer M.; Newhart D.; Nichol R.; Niner E.; Nishimura K.; Norman A.; Northrop R.; Novella P.; Nowak J.A.; Oberling M.; Campo A.O.D.; Olivier A.; Onel Y.; Onishchuk Y.; Ott J.; Pagani L.; Pakvasa S.; Palamara O.; Palestini S.; Paley J.M.; Pallavicini M.; Palomares C.; Pantic E.; Paolone V.; Papadimitriou V.; Papaleo R.; Papanestis A.; Paramesvaran S.; Parke S.; Parsa Z.; Parvu M.; Pascoli S.; Pasqualini L.; Pasternak J.; Pater J.; Patrick C.; Patrizii L.; Patterson R.B.; Patton S.; Patzak T.; Paudel A.; Paulos B.; Paulucci L.; Pavlovic Z.; Pawloski G.; Payne D.; Pec V.; Peeters S.J.; Penichot Y.; Pennacchio E.; Penzo A.; Peres O.L.; Perry J.; Pershey D.; Pessina G.; Petrillo G.; Petta C.; Petti R.; Piastra F.; Pickering L.; Pietropaolo F.; Pillow J.; Plunkett R.; Poling R.; Pons X.; Poonthottathil N.; Pordes S.; Potekhin M.; Potenza R.; Potukuchi B.V.; Pozimski J.; Pozzato M.; Prakash S.; Prakash T.; Prince S.; Prior G.; Pugnere D.; Qi K.; Qian X.; Raaf J.; Raboanary R.; Radeka V.; Rademacker J.; Radics B.; Rafique A.; Raguzin E.; Rai M.; Rajaoalisoa M.; Rakhno I.; Rakotondramanana H.; Rakotondravohitra L.; Ramachers Y.; Rameika R.; Delgado M.R.; Ramson B.; Rappoldi A.; Raselli G.; Ratoff P.; Ravat S.; Razafinime H.; Real J.; Rebel B.; Redondo D.; Reggiani-Guzzo M.; Rehak T.; Reichenbacher J.; Reitzner S.D.; Renshaw A.; Rescia S.; Resnati F.; Reynolds A.; Riccobene G.; Rice L.C.; Rielage K.; Rigaut Y.; Rivera D.; Rochester L.; Roda M.; Rodrigues P.; Alonso M.R.; Rondon J.R.; Roeth A.; Rogers H.; Rosauro-Alcaraz S.; Rossella M.; Rout J.; Roy S.; Rubbia A.; Rubbia C.; Russell B.; Russell J.; Ruterbories D.; Saakyan R.; Sacerdoti S.; Safford T.; Sahu N.; Sala P.; Samios N.; Sanchez M.; Sanders D.A.; Sankey D.; Santana S.; Santos-Maldonado M.; Saoulidou N.; Sapienza P.; Sarasty C.; Sarcevic I.; Savage G.; Savinov V.; Scaramelli A.; Scarff A.; Scarpelli A.; Schaffer T.; Schellman H.; Schlabach P.; Schmitz D.; Scholberg K.; Schukraft A.; Segreto E.; Sensenig J.; Seong I.; Sergi A.; Sergiampietri F.; Sgalaberna D.; Shaevitz M.; Shafaq S.; Shamma M.; Sharma H.R.; Sharma R.; Shaw T.; Shepherd-Themistocleous C.; Shin S.; Shooltz D.; Shrock R.; Simard L.; Simos N.; Sinclair J.; Sinev G.; Singh J.; Singh V.; Sipos R.; Sippach F.; Sirri G.; Sitraka A.; Siyeon K.; Smargianaki D.; Smith A.; Smith A.; Smith E.; Smith P.; Smolik J.; Smy M.; Snopok P.; Nunes M.S.; Sobel H.; Soderberg M.; Salinas C.J.S.; Soldner-Rembold S.; Solomey N.; Solovov V.; Sondheim W.E.; Sorel M.; Soto-Oton J.; Sousa A.; Soustruznik K.; Spagliardi F.; Spanu M.; Spitz J.; Spooner N.J.; Spurgeon K.; Staley R.; Stancari M.; Stanco L.; Steiner H.; Stewart J.; Stillwell B.; Stock J.; Stocker F.; Stokes T.; Strait M.; Strauss T.; Striganov S.; Stuart A.; Summers D.; Surdo A.; Susic V.; Suter L.; Sutera C.; Svoboda R.; Szczerbinska B.; Szelc A.; Talaga R.; Tanaka H.; Oregui B.T.; Tapper A.; Tariq S.; Tatar E.; Tayloe R.; Teklu A.; Tenti M.; Terao K.; Ternes C.A.; Terranova F.; Testera G.; Thea A.; Thompson J.L.; Thorn C.; Timm S.; Tonazzo A.; Torti M.; Tortola M.; Tortorici F.; Totani D.; Toups M.; Touramanis C.; Trevor J.; Trzaska W.H.; Tsai Y.T.; Tsamalaidze Z.; Tsang K.; Tsverava N.; Tufanli S.; Tull C.; Tyley E.; Tzanov M.; Uchida M.A.; Urheim J.; Usher T.; Vagins M.; Vahle P.; Valdiviesso G.; Valencia E.; Vallari Z.; Valle J.W.; Vallecorsa S.; Berg R.V.; De Water R.G.V.; Forero D.V.; Varanini F.; Vargas D.; Varner G.; Vasel J.; Vasseur G.; Vaziri K.; Ventura S.; Verdugo A.; Vergani S.; Vermeulen M.A.; Verzocchi M.; De Souza H.V.; Vignoli C.; Vilela C.; Viren B.; Vrba T.; Wachala T.; Waldron A.V.; Wallbank M.; Wang H.; Wang J.; Wang Y.; Wang Y.; Warburton K.; Warner D.; Wascko M.; Waters D.; Watson A.; Weatherly P.; Weber A.; Weber M.; Wei H.; Weinstein A.; Wenman D.; Wetstein M.; While M.R.; White A.; Whitehead L.H.; Whittington D.; Wilking M.J.; Wilkinson C.; Williams Z.; Wilson F.; Wilson R.J.; Wolcott J.; Wongjirad T.; Wood K.; Wood L.; Worcester E.; Worcester M.; Wret C.; Wu W.; Wu W.; Xiao Y.; Yang G.; Yang T.; Yershov N.; Yonehara K.; Young T.; Yu B.; Yu J.; Zalesak J.; Zambelli L.; Zamorano B.; Zani A.; Zazueta L.; Zeller G.; Zennamo J.; Zeug K.; Zhang C.; Zhao M.; Zhivun E.; Zhu G.; Zimmerman E.D.; Zito M.; Zucchelli S.; Zuklin J.; Zutshi V.; Zwaska R.Abi B.; Acciarri R.; Acero M.A.; Adamov G.; Adams D.; Adinolfi M.; Ahmad Z.; Ahmed J.; Alion T.; Monsalve S.A.; Alt C.; Anderson J.; Andreopoulos C.; Andrews M.; Andrianala F.; Andringa S.; Ankowski A.; Antonova M.; Antusch S.; Aranda-Fernandez A.; Ariga A.; Arnold L.O.; Arroyave M.A.; Asaadi J.; Aurisano A.; Aushev V.; Autiero D.; Azfar F.; Back H.; Back J.J.; Backhouse C.; Baesso P.; Bagby L.; Bajou R.; Balasubramanian S.; Baldi P.; Bambah B.; Barao F.; Barenboim G.; Barker G.; Barkhouse W.; Barnes C.; Barr G.; Monarca J.B.; Barros N.; Barrow J.L.; Bashyal A.; Basque V.; Bay F.; Alba J.B.; Beacom J.F.; Bechetoille E.; Behera B.; Bellantoni L.; Bellettini G.; Bellini V.; Beltramello O.; Belver D.; Benekos N.; Neves F.B.; Berger J.; Berkman S.; Bernardini P.; Berner R.M.; Berns H.; Bertolucci S.; Betancourt M.; Bezawada Y.; Bhattacharjee M.; Bhuyan B.; Biagi S.; Bian J.; Biassoni M.; Biery K.; Bilki B.; Bishai M.; Bitadze A.; Blake A.; Siffert B.B.; Blaszczyk F.; Blazey G.; Blucher E.; Boissevain J.; Bolognesi S.; Bolton T.; Bonesini M.; Bongrand M.; Bonini F.; Booth A.; Booth C.; Bordoni S.; Borkum A.; Boschi T.; Bostan N.; Bour P.; Boyd S.; Boyden D.; Bracinik J.; Braga D.; Brailsford D.; Brandt A.; Bremer J.; Brew C.; Brianne E.; Brice S.J.; Brizzolari C.; Bromberg C.; Brooijmans G.; Brooke J.; Bross A.; Brunetti G.; Buchanan N.; Budd H.; Caiulo D.; Calafiura P.; Calcutt J.; Calin M.; Calvez S.; Calvo E.; Camilleri L.; Caminata A.; Campanelli M.; Caratelli D.; Carini G.; Carlus B.; Carniti P.; Terrazas I.C.; Carranza H.; Castillo A.; Castromonte C.; Cattadori C.; Cavalier F.; Cavanna F.; Centro S.; Cerati G.; Cervelli A.; Villanueva A.C.; Chalifour M.; Chang C.; Chardonnet E.; Chatterjee A.; Chattopadhyay S.; Chaves J.; Chen H.; Chen M.; Chen Y.; Cherdack D.; Chi C.; Childress S.; Chiriacescu A.; Cho K.; Choubey S.; Christensen A.; Christian D.; Christodoulou G.; Church E.; Clarke P.; Coan T.E.; Cocco A.G.; Coelho J.; Conley E.; Conrad J.; Convery M.; Corwin L.; Cotte P.; Cremaldi L.; Cremonesi L.; Crespo-Anadon J.I.; Cristaldo E.; Cross R.; Cuesta C.; Cui Y.; Cussans D.; Dabrowski M.; Motta H.D.; Peres L.D.S.; David Q.; Davies G.S.; Davini S.; Dawson J.; De K.; Almeida R.M.D.; Debbins P.; Bonis I.D.; Decowski M.; Gouvea A.D.; Holanda P.C.D.; Astiz I.L.D.I.; Deisting A.; Jong P.D.; Delbart A.; Delepine D.; Delgado M.; Dell'acqua A.; Lurgio P.D.; Neto J.R.D.M.; Demuth D.M.; Dennis S.; Densham C.; Deptuch G.; Roeck A.D.; Romeri V.D.; Vries J.D.; Dharmapalan R.; Dias M.; Diaz F.; Diaz J.; Domizio S.D.; Giulio L.D.; Ding P.; Noto L.D.; Distefano C.; Diurba R.; Diwan M.; Djurcic Z.; Dokania N.; Dolinski M.; Domine L.; Douglas D.; Drielsma F.; Duchesneau D.; Duffy K.; Dunne P.; Durkin T.; Duyang H.; Dvornikov O.; Dwyer D.; Dyshkant A.; Eads M.; Edmunds D.; Eisch J.; Emery S.; Ereditato A.; Escobar C.; Sanchez L.E.; Evans J.J.; Ewart E.; Ezeribe A.C.; Fahey K.; Falcone A.; Farnese C.; Farzan Y.; Felix J.; Fernandez-Martinez E.; Menendez P.F.; Ferraro F.; Fields L.; Filkins A.; Filthaut F.; Fitzpatrick R.S.; Flanagan W.; Fleming B.; Flight R.; Fowler J.; Fox W.; Franc J.; Francis K.; Franco D.; Freeman J.; Freestone J.; Fried J.; Friedland A.; Fuess S.; Furic I.; Furmanski A.P.; Gago A.; Gallagher H.; Gallego-Ros A.; Gallice N.; Galymov V.; Gamberini E.; Gamble T.; Gandhi R.; Gandrajula R.; Gao S.; Garcia-Gamez D.; Garcia-Peris M.A.; Gardiner S.; Gastler D.; Ge G.; Gelli B.; Gendotti A.; Gent S.; Ghorbani-Moghaddam Z.; Gibin D.; Gil-Botella I.; Girerd C.; Giri A.; Gnani D.; Gogota O.; Gold M.; Gollapinni S.; Gollwitzer K.; Gomes R.A.; Bermeo L.G.; Fajardo L.S.G.; Gonnella F.; Gonzalez-Cuevas J.; Goodman M.C.; Goodwin O.; Goswami S.; Gotti C.; Goudzovski E.; Grace C.; Graham M.; Gramellini E.; Gran R.; Granados E.; Grant A.; Grant C.; Gratieri D.; Green P.; Green S.; Greenler L.; Greenwood M.; Greer J.; Griffith C.; Groh M.; Grudzinski J.; Grzelak K.; Gu W.; Guarino V.; Guenette R.; Guglielmi A.; Guo B.; Guthikonda K.; Gutierrez R.; Guzowski P.; Guzzo M.M.; Gwon S.; Habig A.; Hackenburg A.; Hadavand H.; Haenni R.; Hahn A.; Haigh J.; Haiston J.; Hamernik T.; Hamilton P.; Han J.; Harder K.; Harris D.A.; Hartnell J.; Hasegawa T.; Hatcher R.; Hazen E.; Heavey A.; Heeger K.M.; Hennessy K.; Henry S.; Morquecho M.H.; Herner K.; Hertel L.; Hesam A.S.; Hewes J.; Pichardo A.H.; Hill T.; Hillier S.J.; Himmel A.; Hoff J.; Hohl C.; Holin A.; Hoppe E.; Horton-Smith G.A.; Hostert M.; Hourlier A.; Howard B.; Howell R.; Huang J.; Huang J.; Hugon J.; Iles G.; Iliescu A.M.; Illingworth R.; Ioannisian A.; Itay R.; Izmaylov A.; James E.; Jargowsky B.; Jediny F.; Jesus-Valls C.; Ji X.; Jiang L.; Jimenez S.; Jipa A.; Joglekar A.; Johnson C.; Johnson R.; Jones B.; Jones S.; Jung C.; Junk T.; Jwa Y.; Kabirnezhad M.; Kaboth A.; Kadenko I.; Kamiya F.; Karagiorgi G.; Karcher A.; Karolak M.; Karyotakis Y.; Kasai S.; Kasetti S.P.; Kashur L.; Kazaryan N.; Kearns E.; Keener P.; Kelly K.J.; Kemp E.; Ketchum W.; Kettell S.; Khabibullin M.; Khotjantsev A.; Khvedelidze A.; Kim D.; King B.; Kirby B.; Kirby M.; Klein J.; Koehler K.; Koerner L.W.; Kohn S.; Koller P.P.; Kordosky M.; Kosc T.; Kose U.; Kostelecky V.; Kothekar K.; Krennrich F.; Kreslo I.; Kudenko Y.; Kudryavtsev V.; Kulagin S.; Kumar J.; Kumar R.; Kuruppu C.; Kus V.; Kutter T.; Lambert A.; Lande K.; Lane C.E.; Lang K.; Langford T.; Lasorak P.; Last D.; Lastoria C.; Laundrie A.; Lawrence A.; Lazanu I.; Lazur R.; Le T.; Learned J.; Lebrun P.; Miotto G.L.; Lehnert R.; De Oliveira M.L.; Leitner M.; Leyton M.; Li L.; Li S.; Li S.; Li T.; Li Y.; Liao H.; Lin C.; Lin S.; Lister A.; Littlejohn B.R.; Liu J.; Lockwitz S.; Loew T.; Lokajicek M.; Lomidze I.; Long K.; Loo K.; Lorca D.; Lord T.; Losecco J.; Louis W.C.; Luk K.; Luo X.; Lurkin N.; Lux T.; Luzio V.P.; MacFarland D.; MacHado A.; MacHado P.; MacIas C.; MacIer J.; Maddalena A.; Madigan P.; Magill S.; Mahn K.; Maio A.; Maloney J.A.; Mandrioli G.; Maneira J.C.; Manenti L.; Manly S.; Mann A.; Manolopoulos K.; Plata M.M.; Marchionni A.; Marciano W.; Marfatia D.; Mariani C.; Maricic J.; Marinho F.; Marino A.D.; Marshak M.; Marshall C.; Marshall J.; Marteau J.; Martin-Albo J.; Martinez N.; Caicedo D.A.M.; Martynenko S.; Mason K.; Mastbaum A.; Masud M.; Matsuno S.; Matthews J.; Mauger C.; Mauri N.; Mavrokoridis K.; Mazza R.; Mazzacane A.; Mazzucato E.; McCluskey E.; McConkey N.; McFarland K.S.; McGrew C.; McNab A.; Mefodiev A.; Mehta P.; Melas P.; Mellinato M.; Mena O.; Menary S.; Mendez H.; Menegolli A.; Meng G.; Messier M.; Metcalf W.; Mewes M.; Meyer H.; Miao T.; Michna G.; Miedema T.; Migenda J.; Milincic R.; Miller W.; Mills J.; Milne C.; Mineev O.; Miranda O.G.; Miryala S.; Mishra C.; Mishra S.; Mislivec A.; Mladenov D.; Mocioiu I.; Moffat K.; Moggi N.; Mohanta R.; Mohayai T.A.; Mokhov N.; Molina J.A.; Bueno L.M.; Montanari A.; Montanari C.; Montanari D.; Zetina L.M.M.; Moon J.; Mooney M.; Moor A.; Moreno D.; Morgan B.; Morris C.; Mossey C.; Motuk E.; Moura C.A.; Mousseau J.; Mu W.; Mualem L.; Mueller J.; Muether M.; Mufson S.; Muheim F.; Muir A.; Mulhearn M.; Muramatsu H.; Murphy S.; Musser J.; Nachtman J.; Nagu S.; Nalbandyan M.; Nandakumar R.; Naples D.; Narita S.; Navas-Nicolas D.; Nayak N.; Nebot-Guinot M.; Necib L.; Negishi K.; Nelson J.K.; Nesbit J.; Nessi M.; Newbold D.; Newcomer M.; Newhart D.; Nichol R.; Niner E.; Nishimura K.; Norman A.; Northrop R.; Novella P.; Nowak J.A.; Oberling M.; Campo A.O.D.; Olivier A.; Onel Y.; Onishchuk Y.; Ott J.; Pagani L.; Pakvasa S.; Palamara O.; Palestini S.; Paley J.M.; Pallavicini M.; Palomares C.; Pantic E.; Paolone V.; Papadimitriou V.; Papaleo R.; Papanestis A.; Paramesvaran S.; Parke S.; Parsa Z.; Parvu M.; Pascoli S.; Pasqualini L.; Pasternak J.; Pater J.; Patrick C.; Patrizii L.; Patterson R.B.; Patton S.; Patzak T.; Paudel A.; Paulos B.; Paulucci L.; Pavlovic Z.; Pawloski G.; Payne D.; Pec V.; Peeters S.J.; Penichot Y.; Pennacchio E.; Penzo A.; Peres O.L.; Perry J.; Pershey D.; Pessina G.; Petrillo G.; Petta C.; Petti R.; Piastra F.; Pickering

    Anatomy-Specific Pancreatic Stump Management to Reduce the Risk of Pancreatic Fistula After Pancreatic Head Resection.

    Get PDF
    BACKGROUND: The anatomical status of the pancreatic remnant after a pancreatic head resection varies greatly among patients. The aim of the present study was to improve management of the pancreatic remnant for reducing pancreatic fistula after pancreatic head resection. METHODS: Ninety-five consecutive patients who underwent an end-to-side, duct-to-mucosa pancreaticojejunostomy after pancreatic head resection were included in the study. To approximate the pancreatic stump to the jejunum, the transfixing and interrupted suture techniques were used in 51 and 44 patients, respectively. We modified the interrupted suture technique according to the anatomical status of the pancreatic remnant, i.e., the shape of the pancreatic stump and the location of the pancreatic duct. RESULTS: There was no operative mortality in this study. Overall, 14 patients (15%) developed a clinically relevant pancreatic fistula. Certain anatomical features, including a small pancreatic duct, a soft, nonfibrotic pancreatic gland, and a pancreatic duct adjacent to the posterior cut edge, were significantly associated with pancreatic fistula. The fistula rate in the interrupted suture group was 7%, lower than that (22%) in the transfixing suture group (P = 0.036), and it was not influenced by pancreatic anatomy. Multivariate analysis identified a nonfibrotic pancreas (versus fibrotic pancreas; odds ratio [OR] 12.58, 95% CI 1.2-23.9; P = 0.001), a soft pancreas (versus hard pancreas; OR 4.67, CI 1.2-51.1; P = 0.006), and the transfixing suture technique (versus interrupted suture technique; OR 9.91, CI 1.7-57.5; P = 0.003) as significant predictors of clinically relevant pancreatic fistula. CONCLUSIONS: Pancreatic anastomosis modified according to the pancreatic anatomy is effective in reducing the risk of pancreatic fistula formation with end-to-side, duct-to-mucosa pancreaticojejunostomy after pancreatic head resection

    Scintillation light detection in the 6-m drift-length ProtoDUNE Dual Phase liquid argon TPC

    Get PDF
    DUNE is a dual-site experiment for long-baseline neutrino oscillation studies, neutrino astrophysics and nucleon decay searches. ProtoDUNE Dual Phase (DP) is a 6  ×  6  ×  6 m 3 liquid argon time-projection-chamber (LArTPC) that recorded cosmic-muon data at the CERN Neutrino Platform in 2019-2020 as a prototype of the DUNE Far Detector. Charged particles propagating through the LArTPC produce ionization and scintillation light. The scintillation light signal in these detectors can provide the trigger for non-beam events. In addition, it adds precise timing capabilities and improves the calorimetry measurements. In ProtoDUNE-DP, scintillation and electroluminescence light produced by cosmic muons in the LArTPC is collected by photomultiplier tubes placed up to 7 m away from the ionizing track. In this paper, the ProtoDUNE-DP photon detection system performance is evaluated with a particular focus on the different wavelength shifters, such as PEN and TPB, and the use of Xe-doped LAr, considering its future use in giant LArTPCs. The scintillation light production and propagation processes are analyzed and a comparison of simulation to data is performed, improving understanding of the liquid argon properties

    Supernova neutrino burst detection with the Deep Underground Neutrino Experiment

    Get PDF
    The Deep Underground Neutrino Experiment (DUNE), a 40-kton underground liquid argon time projection chamber experiment, will be sensitive to the electron-neutrino flavor component of the burst of neutrinos expected from the next Galactic core-collapse supernova. Such an observation will bring unique insight into the astrophysics of core collapse as well as into the properties of neutrinos. The general capabilities of DUNE for neutrino detection in the relevant few- to few-tens-of-MeV neutrino energy range will be described. As an example, DUNE's ability to constrain the νe spectral parameters of the neutrino burst will be considered
    corecore