26 research outputs found

    Time-delayed model of RNA interference

    Get PDF
    RNA interference (RNAi) is a fundamental cellular process that inhibits gene expression through cleavage and destruction of target mRNA. It is responsible for a number of important intracellular functions, from being the first line of immune defence against pathogens to regulating development and morphogenesis. In this paper we consider a mathematical model of RNAi with particular emphasis on time delays associated with two aspects of primed amplification: binding of siRNA to aberrant RNA, and binding of siRNA to mRNA, both of which result in the expanded production of dsRNA responsible for RNA silencing. Analytical and numerical stability analyses are performed to identify regions of stability of different steady states and to determine conditions on parameters that lead to instability. Our results suggest that while the original model without time delays exhibits a bi-stability due to the presence of a hysteresis loop, under the influence of time delays, one of the two steady states with the high (default) or small (silenced) concentration of mRNA can actually lose its stability via a Hopf bifurcation. This leads to the co-existence of a stable steady state and a stable periodic orbit, which has a profound effect on the dynamics of the system

    Evolution of the differential transverse momentum correlation function with centrality in Au+Au collisions at sNN=200\sqrt{s_{NN}} = 200 GeV

    Get PDF
    We present first measurements of the evolution of the differential transverse momentum correlation function, {\it C}, with collision centrality in Au+Au interactions at sNN=200\sqrt{s_{NN}} = 200 GeV. {\it C} exhibits a strong dependence on collision centrality that is qualitatively similar to that of number correlations previously reported. We use the observed longitudinal broadening of the near-side peak of {\it C} with increasing centrality to estimate the ratio of the shear viscosity to entropy density, η/s\eta/s, of the matter formed in central Au+Au interactions. We obtain an upper limit estimate of η/s\eta/s that suggests that the produced medium has a small viscosity per unit entropy.Comment: 7 pages, 4 figures, STAR paper published in Phys. Lett.

    Nucleation mechanism of intra-granular blisters in tungsten exposed to hydrogen plasma

    No full text
    Despite being a subject of long-term research on fusion-reactor structural materials, the behaviour of hydrogen in tungsten under plasma exposure remains unclear. Here, the explicit transmission electron microscopy observations for recrystallised W after hydrogen plasma exposure are successfully obtained. These are the first observations to show the intra-granular blisters are located on the {100} planes. Molecular dynamics simulations confirm the hydrogen blister initiating at dislocation core behaved similarly to those in experiment. We propose that the widely reported intra-granular hydrogen blisters are nucleated at the edge dislocation core and develop along the (100) plane in tungsten
    corecore