2,990 research outputs found

    Truth Table Invariant Cylindrical Algebraic Decomposition by Regular Chains

    Get PDF
    A new algorithm to compute cylindrical algebraic decompositions (CADs) is presented, building on two recent advances. Firstly, the output is truth table invariant (a TTICAD) meaning given formulae have constant truth value on each cell of the decomposition. Secondly, the computation uses regular chains theory to first build a cylindrical decomposition of complex space (CCD) incrementally by polynomial. Significant modification of the regular chains technology was used to achieve the more sophisticated invariance criteria. Experimental results on an implementation in the RegularChains Library for Maple verify that combining these advances gives an algorithm superior to its individual components and competitive with the state of the art

    Adapting Real Quantifier Elimination Methods for Conflict Set Computation

    Get PDF
    The satisfiability problem in real closed fields is decidable. In the context of satisfiability modulo theories, the problem restricted to conjunctive sets of literals, that is, sets of polynomial constraints, is of particular importance. One of the central problems is the computation of good explanations of the unsatisfiability of such sets, i.e.\ obtaining a small subset of the input constraints whose conjunction is already unsatisfiable. We adapt two commonly used real quantifier elimination methods, cylindrical algebraic decomposition and virtual substitution, to provide such conflict sets and demonstrate the performance of our method in practice

    Carrier dynamics and infrared-active phonons in c-axis oriented RuSr2_2GdCu2_2O8_8 film

    Full text link
    The conductivity spectra of c-axis oriented thin RuSr2_2GdCu2_2O8_8 film on SrTiO3_3 substrate, prepared by pulsed-laser deposition, are obtained from the analysis of the reflectivity spectra over broad frequency range and temperatures between 10 and 300 K. The free charge carriers are found to be strongly overdamped with their scattering rate (1.0 eV at room temperature) exceeding the plasma frequency (0.55 eV). Four phonon lines are identified in the experimental spectra and assigned to the specific oxygen related in-plane polarized vibrations based on the comparison with the results of a lattice dynamics shell model calculations.Comment: 3 pages, 4 figure

    Magnetic phase diagrams of the Kagome staircase compound Co3V2O8

    Full text link
    At zero magnetic field, a series of five phase transitions occur in Co3V2O8. The Neel temperature, TN=11.4 K, is followed by four additional phase changes at T1=8.9 K, T2=7.0 K, T3=6.9 K, and T4=6.2 K. The different phases are distinguished by the commensurability of the b-component of its spin density wave vector. We investigate the stability of these various phases under magnetic fields through dielectric constant and magnetic susceptibility anomalies. The field-temperature phase diagram of Co3V2O8 is completely resolved. The complexity of the phase diagram results from the competition of different magnetic states with almost equal ground state energies due to competing exchange interactions and frustration.Comment: Proceedings of the 2007 Conference on Strongly Correlated Electron Systems, 2 pages, 2 figure

    A critical review on sustainable biochar system through gasification: energy and environmental applications

    Get PDF
    This review lays great emphasis on production and characteristics of biochar through gasification. Specifically, the physicochemical properties and yield of biochar through the diverse gasification conditions associated with various types of biomass were extensively evaluated. In addition, potential application scenarios of biochar through gasification were explored and their environmental implications were discussed. To qualitatively evaluate biochar sustainability through the gasification process, all gasification products (i.e., syngas and biochar) were evaluated via life cycle assessment (LCA). A concept of balancing syngas and biochar production for an economically and environmentally feasible gasification system was proposed and relevant challenges and solutions were suggested in this review

    Increasing levels of circulating Th17 cells and interleukin-17 in rheumatoid arthritis patients with an inadequate response to anti-TNF-α therapy

    Get PDF
    Introduction: The objective of this study was to investigate the effects of tumor necrosis factor (TNF)-alpha inhibitors on circulating T helper-type 17 (Th17) cells and Th17-related cytokines in patients with rheumatoid arthritis (RA). Methods: The frequencies of circulating Th17 cells and serum levels of Th17-related cytokines were determined using flow cytometry analysis and ELISA, respectively, in 48 RA patients both before (baseline) and six months after anti-TNF-alpha therapy. Therapeutic response was evaluated using European League Against Rheumatism (EULAR) response criteria. Results: Significantly higher baseline frequencies of circulating Th17 cells and serum levels of interleukin (IL)-6, IL17, IL-21, IL-23 and TNF-alpha were observed in active RA patients than in 12 healthy controls (all P < 0.001). After anti-TNF-alpha therapy, 36 patients (75%) were EULAR responders (20 good responders and 16 moderate responders) and 12 (25.0%) were non-responders. The mean levels of circulating Th17 cells and IL-17 significantly decreased (1.13% vs. 0.79%; 43.1 pg/ml vs. 27.8 pg/ml; respectively, both P < 0.001) in parallel with clinical remission in responders. Levels of IL-6, IL-21, IL-23 and TNF-alpha were significantly decreased after anti-TNF-alpha therapy in responders. In contrast, the mean levels of circulating Th17 cells and IL-17 significantly increased after anti-TNF-alpha therapy (2.94% vs. 4.23%; 92.1 pg/ml vs. 148.6 pg/ml; respectively, both P < 0.05) in non-responders. Logistic regression analysis identified a high baseline level of IL-17 as a significant predictor of poor therapeutic response. Conclusions: The beneficial effect of anti-TNF-alpha therapy might involve a decrease in Th17-related cytokines in responders, whereas rising levels of circulating Th17-cells and IL-17 were observed in patients with an inadequate response to anti-TNF-alpha therapy

    A low-bias simulation scheme for the SABR stochastic volatility model

    Get PDF
    The Stochastic Alpha Beta Rho Stochastic Volatility (SABR-SV) model is widely used in the financial industry for the pricing of fixed income instruments. In this paper we develop an lowbias simulation scheme for the SABR-SV model, which deals efficiently with (undesired) possible negative values, the martingale property of the discrete scheme and the discretization bias of commonly used Euler discretization schemes. The proposed algorithm is based the analytic properties of the governing distribution. Experiments with realistic model parameters show that this scheme is robust for interest rate valuation

    Enhanced critical current density of YBa2Cu3Ox films grown on Nd1/3Eu1/3Gd1/3Ba2Cu3Ox with nano-undulated surface morphology

    Full text link
    We report a simple and easily controllable method where a nano-undulated surface morphology of Nd1/3Eu1/3Gd1/3Ba2Cu3Ox (NEG) films leads to a substantial increase in the critical current density in superconducting YBa2Cu3Ox (YBCO) films deposited by pulsed laser deposition on such NEG layers. The enhancement is observed over a wide range of fields and temperatures. Transmission electron microscopy shows that such YBCO films possess a high density of localized areas, typically 20 x 20 nm2 in size, where distortion of atomic planes give rotational (2 to 5 degrees) moire patterns. Their distribution is random and uniform, and expected to be the origin of the enhanced flux pinning. Magneto-optical imaging shows that these films have excellent macroscopic magnetic uniformity.Comment: 4 pages, 4 figure

    Projective and Coarse Projective Integration for Problems with Continuous Symmetries

    Full text link
    Temporal integration of equations possessing continuous symmetries (e.g. systems with translational invariance associated with traveling solutions and scale invariance associated with self-similar solutions) in a ``co-evolving'' frame (i.e. a frame which is co-traveling, co-collapsing or co-exploding with the evolving solution) leads to improved accuracy because of the smaller time derivative in the new spatial frame. The slower time behavior permits the use of {\it projective} and {\it coarse projective} integration with longer projective steps in the computation of the time evolution of partial differential equations and multiscale systems, respectively. These methods are also demonstrated to be effective for systems which only approximately or asymptotically possess continuous symmetries. The ideas of projective integration in a co-evolving frame are illustrated on the one-dimensional, translationally invariant Nagumo partial differential equation (PDE). A corresponding kinetic Monte Carlo model, motivated from the Nagumo kinetics, is used to illustrate the coarse-grained method. A simple, one-dimensional diffusion problem is used to illustrate the scale invariant case. The efficiency of projective integration in the co-evolving frame for both the macroscopic diffusion PDE and for a random-walker particle based model is again demonstrated
    corecore