63 research outputs found

    [(7-chloroquinolin-4-yl)amino]acetophenones and their copper(II) derivatives

    Get PDF
    The synthesis of the compounds [(7-chloroquinolin-4-yl)amino]acetophenones (4, 5) and their copper(II) complexes (4a, 5a) is reported. The compounds were characterized using a wide range of spectroscopic and spectrometric techniques, such as FTIR, UV-vis, NMR, EPR, ESI-CID-MS2. The spectral results suggested that the ligand acted as chelating species coordinating the metal through the endocyclic nitrogen of the quinoline ring in both complexes, with general formulae ex pressed in two ways, according to the phase in which they are: [Cu(L)2Cl2] for solid phase and [Cu(L)2][2Cl] for liquid phase. The EPR study of the Cu (II) complexes indicated a probable distorted tetrahedral coordination geometry. This result was confirmed by the calculated optimized structures at the DFT/B3LYP method with the 6-31G (d,p) basis set. The characterization of the fragmentation pattern of protonated free ligands was extended here to fragments as low as m/z 43, while for coordination complexes it extends to fragments at m/z 80 and m/z 111. The antimalarial activity of the compounds was determined through three different tests: inhibitory activity against in vitro growth of Plasmodium falciparum (W2), inhibition of hemozoin formation (β-hematin) and in vitro inhibitory activity against recombinant falcipain-2, where compound 5 showed considerable activity. However, the activity of free ligands against P. falciparum was increased by complexing with the Cu (II) metal ion. The values of the HOMO-LUMO energy gap of 3.847 eV (4a) and 3.932 eV (5a) were interpreted with high chemical activity and thus, could influence on biological activity. In both compounds, the total electron density surface mapped with electrostatic po tential clearly revealed the presence of high negative charge on the Cu atom. Also, this study reported the molecular docking of free ligands (4, 5) using software package ArgusLab 4.0.1. The results revealed the importance of water molecules as interaction bridges through hydrogen bonds between free ligands and β-hematin; at the same time, the hypothesis that π–π interaction between quinoline derivatives and the electronic system of hematin governs the formation of adducts was confirmed

    Wave-front reconstruction via single-pixel homodyne imaging

    Get PDF
    We combine single-pixel imaging and homodyne detection to perform full object recovery (phase and amplitude). Our method does not require any prior information about the object or the illuminating fields. As a demonstration, we reconstruct the optical properties of several semi-transparent objects and find that the reconstructed complex transmission has a phase precision of 0.02 radians and a relative amplitude precision of 0.01. &nbsp;</p

    Galoisian Approach to Supersymmetric Quantum Mechanics

    Get PDF
    This thesis is concerning to the Differential Galois Theory point of view of the Supersymmetric Quantum Mechanics. The main object considered here is the non-relativistic stationary Schr\"odinger equation, specially the integrable cases in the sense of the Picard-Vessiot theory and the main algorithmic tools used here are the Kovacic algorithm and the \emph{algebrization method} to obtain linear differential equations with rational coefficients. We analyze the Darboux transformations, Crum iterations and supersymmetric quantum mechanics with their \emph{algebrized} versions from a Galoisian approach. Applying the algebrization method and the Kovacic's algorithm we obtain the ground state, the set of eigenvalues, eigenfunctions, the differential Galois groups and eigenrings of some Schr\"odinger equation with potentials such as exactly solvable and shape invariant potentials. Finally, we introduce one methodology to find exactly solvable potentials: to construct other potentials, we apply the algebrization algorithm in an inverse way since differential equations with orthogonal polynomials and special functions as solutions.Comment: Phd Dissertation, Universitat Politecnica de Catalunya, 200

    Clonal chromosomal mosaicism and loss of chromosome Y in elderly men increase vulnerability for SARS-CoV-2

    Full text link
    The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, COVID-19) had an estimated overall case fatality ratio of 1.38% (pre-vaccination), being 53% higher in males and increasing exponentially with age. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, we found 133 cases (1.42%) with detectable clonal mosaicism for chromosome alterations (mCA) and 226 males (5.08%) with acquired loss of chromosome Y (LOY). Individuals with clonal mosaic events (mCA and/or LOY) showed a 54% increase in the risk of COVID-19 lethality. LOY is associated with transcriptomic biomarkers of immune dysfunction, pro-coagulation activity and cardiovascular risk. Interferon-induced genes involved in the initial immune response to SARS-CoV-2 are also down-regulated in LOY. Thus, mCA and LOY underlie at least part of the sex-biased severity and mortality of COVID-19 in aging patients. Given its potential therapeutic and prognostic relevance, evaluation of clonal mosaicism should be implemented as biomarker of COVID-19 severity in elderly people. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, individuals with clonal mosaic events (clonal mosaicism for chromosome alterations and/or loss of chromosome Y) showed an increased risk of COVID-19 lethality

    Strategies in 'snake venomics' aiming at an integrative view of compositional, functional, and immunological characteristics of venoms

    Get PDF
    This work offers a general overview on the evolving strategies for the proteomic analysis of snake venoms, and discusses how these may be combined through diverse experimental approaches with the goal of achieving a more comprehensive knowledge on the compositional, toxic, and immunological characteristics of venoms. Some recent developments in this field are summarized, highlighting how strategies have evolved from the mere cataloguing of venom components (proteomics/venomics), to a broader exploration of their immunological (antivenomics) and functional (toxicovenomics) characteristics. Altogether, the combination of these complementary strategies is helping to build a wider, more integrative view of the life-threatening protein cocktails produced by venomous snakes, responsible for thousands of deaths every year.Ministerio de Economía y Competitividad/[BFU2013-42833-P]//EspañaUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias de la Salud::Instituto Clodomiro Picado (ICP

    Nurses' perceptions of aids and obstacles to the provision of optimal end of life care in ICU

    Get PDF
    Contains fulltext : 172380.pdf (publisher's version ) (Open Access

    Nuclear magnetic resonance data of C8H8N2OS

    No full text
    corecore