286 research outputs found

    QCD at non-zero temperature and density from the lattice

    Full text link
    The study of systems as diverse as the cores of neutron stars and heavy-ion collision experiments requires the understanding of the phase structure of QCD at non-zero temperature, T, and chemical potential, mu_q. We review some of the difficulties of performing lattice simulations of QCD with non-zero mu_q, and outline the re-weighting method used to overcome this problem. This method is used to determine the critical endpoint of QCD in the (mu_q,T) plane. We study the pressure and quark number susceptibility at small mu_q.Comment: 5 pages, talk presented by C.R. Allton at the QCD Downunder Conference, Barossa Valley and Adelaide, March 200

    The Equation of State for Two Flavor QCD at Non-zero Chemical Potential

    Full text link
    We present results of a simulation of QCD on a 4x16^3 lattice with 2 continuum flavors of p4-improved staggered fermion with mass m/T=0.4. Derivatives of the thermodynamic grand potential with respect to quark chemical potential mu_q up to fourth order are calculated, enabling estimates of the pressure, quark number density and associated susceptibilities as functions of mu_q via Taylor series expansion. Discretisation effects associated with various staggered fermion formulations are discussed in some detail. In addition it is possible to estimate the radius of convergence of the expansion as a function of temperature. We also discuss the calculation of energy and entropy densities which are defined via mixed derivatives of the thermodynamic grand potential with respect to the bare couplings and quark masses.Comment: 30 pages, LaTeX2e File, 17 Postscript figure

    Remarks on the multi-parameter reweighting method for the study of lattice QCD at non-zero temperature and density

    Full text link
    We comment on the reweighting method for the study of finite density lattice QCD. We discuss the applicable parameter range of the reweighting method for models which have more than one simulation parameter. The applicability range is determined by the fluctuations of the modification factor of the Boltzmann weight. In some models having a first order phase transition, the fluctuations are minimized along the phase transition line if we assume that the pressure in the hot and the cold phase is balanced at the first order phase transition point. This suggests that the reweighting method with two parameters is applicable in a wide range for the purpose of tracing out the phase transition line in the parameter space. To confirm the usefulness of the reweighting method for 2 flavor QCD, the fluctuations of the reweighting factor are measured by numerical simulations for the cases of reweighting in the quark mass and chemical potential directions. The relation with the phase transition line is discussed. Moreover, the sign problem caused by the complex phase fluctuations is studied.Comment: 20 page, 6 figure

    The QCD thermal phase transition in the presence of a small chemical potential

    Get PDF
    We propose a new method to investigate the thermal properties of QCD with a small quark chemical potential μ\mu. Derivatives of the phase transition point with respect to μ\mu are computed at μ=0\mu=0 for 2 flavors of p-4 improved staggered fermions with ma=0.1,0.2ma=0.1,0.2 on a 163×416^3\times4 lattice. The resulting Taylor expansion is well behaved for the small values of μq/Tc0.1\mu_{\rm q}/T_c\sim0.1 relevant for RHIC phenomenology, and predicts a critical curve Tc(μ)T_c(\mu) in reasonable agreement with estimates obtained using exact reweighting. In addition, we contrast the case of isoscalar and isovector chemical potentials, quantify the effect of μ0\mu\not=0 on the equation of state, and comment on the complex phase of the fermion determinant in QCD with μ0\mu\not=0.Comment: 26 pages, 25 figures, minor modificatio

    Subsequent chemotherapy reverses acquired tyrosine kinase inhibitor resistance and restores response to tyrosine kinase inhibitor in advanced non-small-cell lung cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Patients with advanced or metastatic non-small cell lung cancer (NSCLC) can develop acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors (TKIs) erlotinib and gefitinib. Here, we report the successful treatment with alternating chemotherapy and TKIs of two cases of advanced NSCLC who developed resistance to TKI.</p> <p>Case presentation</p> <p>Two patients with advanced or metastatic NSCLC were treated with palliative chemotherapy followed by erlotinib/gefitinib. When TKI therapy failed, two cycles of chemotherapy were provided, which were followed by re-challenge with erlotinib or gefitinib.</p> <p>Conclusion</p> <p>NSCLC patients with acquired TKI resistance should be managed aggressively whenever possible. Subsequent chemotherapy and target treatment is one of the reasonable choices for those with an initial dramatic clinical response with erlotinib/gefitinib treatment. Further studies are warranted to substantiate the association of erlotinib /gefitinib treatment with the efficacy of NSCLC patients with acquired TKI failure.</p

    A penalty approach to a discretized double obstacle problem with derivative constraints

    Get PDF
    This work presents a penalty approach to a nonlinear optimization problem with linear box constraints arising from the discretization of an infinite-dimensional differential obstacle problem with bound constraints on derivatives. In this approach, we first propose a penalty equation approximating the mixed nonlinear complementarity problem representing the Karush-Kuhn-Tucker conditions of the optimization problem. We then show that the solution to the penalty equation converges to that of the complementarity problem with an exponential convergence rate depending on the parameters used in the equation. Numerical experiments, carried out on a non-trivial test problem to verify the theoretical finding, show that the computed rates of convergence match the theoretical ones well

    Controlled Orientation of Active Sites in a Nanostructured Multienzyme Complex

    Get PDF
    Multistep cascade reactions in nature maximize reaction efficiency by co-assembling related enzymes. Such organization facilitates the processing of intermediates by downstream enzymes. Previously, the studies on multienzyme nanocomplexes assembled on DNA scaffolds demonstrated that closer interenzyme distance enhances the overall reaction efficiency. However, it remains unknown how the active site orientation controlled at nanoscale can have an effect on multienzyme reaction. Here, we show that controlled alignment of active sites promotes the multienzyme reaction efficiency. By genetic incorporation of a non-natural amino acid and two compatible bioorthogonal chemistries, we conjugated mannitol dehydrogenase to formate dehydrogenase with the defined active site arrangement with the residue-level accuracy. The study revealed that the multienzyme complex with the active sites directed towards each other exhibits four-fold higher relative efficiency enhancement in the cascade reaction and produces 60% more D-mannitol than the other complex with active sites directed away from each other.ope

    Neuroprotection of Tanshinone IIA against Cerebral Ischemia/Reperfusion Injury through Inhibition of Macrophage Migration Inhibitory Factor in Rats

    Get PDF
    . Recent studies have demonstrated that TSA has protective effects against focal cerebral I/R injury. However, little is known about the underlying mechanisms. Here we put forward the hypothesis that TSA acts through inhibition of MIF expression during focal cerebral I/R injury in rats.Rats were subjected to middle cerebral artery occlusion (MCAO) for 2 hours. This was followed by reperfusion. We measured neurological deficits, brain water content, and infarct volume, and found that neurological dysfunction, brain edema, and brain infarction were significantly attenuated by TSA 6 hours after reperfusion. We also measured myeloperoxidase (MPO) activity at 6 and 24 hours, and found that neutrophil infiltration was significantly higher in the vehicle+I/R group than in the TSA+I/R group. ELISA demonstrated that TSA could inhibit MIF expression and the release of TNF-α and IL-6 induced by I/R injury. Western blot analysis and immunofluorescence staining showed that MIF expression was significantly lower in the TSA+I/R group than in the vehicle+I/R group. MIF was found almost all located in neurons and hardly any located in astrocytes in the cerebral cortex. Western blot analysis and EMSA demonstrated that NF-κB expression and activity were significantly increased in the vehicle+I/R group. However, these changes were attenuated by TSA.Our results suggest that TSA helps alleviate the proinflammatory responses associated with I/R-induced injury and that this neuroprotective effect may occur through down-regulation of MIF expression in neurons

    Free backbone carbonyls mediate rhodopsin activation

    Get PDF
    Conserved prolines in the transmembrane helices of G-protein-coupled receptors (GPCRs) are often considered to function as hinges that divide the helix into two segments capable of independent motion. Depending on their potential to hydrogen-bond, the free C=O groups associated with these prolines can facilitate conformational flexibility, conformational switching or stabilization of the receptor structure. To address the role of conserved prolines in family A GPCRs through solid-state NMR spectroscopy, we focus on bovine rhodopsin, a GPCR in the visual receptor subfamily. The free backbone C=O groups on helices H5 and H7 stabilize the inactive rhodopsin structure through hydrogen-bonds to residues on adjacent helices. In response to light-induced isomerization of the retinal chromophore, hydrogen-bonding interactions involving these C=O groups are released, thus facilitating repacking of H5 and H7 onto the transmembrane core of the receptor. These results provide insights into the multiple structural and functional roles of prolines in membrane proteins

    The development of contour processing : evidence from physiology and psychophysics

    Get PDF
    Object perception and pattern vision depend fundamentally upon the extraction of contours from the visual environment. In adulthood, contour or edge-level processing is supported by the Gestalt heuristics of proximity, collinearity, and closure. Less is known, however, about the developmental trajectory of contour detection and contour integration. Within the physiology of the visual system, long-range horizontal connections in V1 and V2 are the likely candidates for implementing these heuristics. While post-mortem anatomical studies of human infants suggest that horizontal interconnections reach maturity by the second year of life, psychophysical research with infants and children suggests a considerably more protracted development. In the present review, data from infancy to adulthood will be discussed in order to track the development of contour detection and integration. The goal of this review is thus to integrate the development of contour detection and integration with research regarding the development of underlying neural circuitry.We conclude that the ontogeny of this system is best characterized as a developmentally extended period of associative acquisition whereby horizontal connectivity becomes functional over longer and longer distances, thus becoming able to effectively integrate over greater spans of visual space. Keywords
    corecore