95 research outputs found

    Common Household Chemicals and the Allergy Risks in Pre-School Age Children

    Get PDF
    The risk of indoor exposure to volatile organic compounds (VOCs) on allergic airway diseases in children remains unknown.We examined the residential concentrations of VOCs, emitted from building materials, paints, furniture, and other lifestyle practices and the risks of multiple allergic diseases as well as the IgE-sensitization in pre-school age children in Sweden.In a case-control investigation (198 case children with asthma and allergy and 202 healthy controls), air samples were collected in the room where the child slept. The air samples were analyzed for the levels of eight classes of VOCs.A natural-log unit of summed propylene glycol and glycol ethers (PGEs) in bedroom air (equal to interquartile range, or 3.43 - 15.65 Âľg/m(3)) was associated with 1.5-fold greater likelihood of being a case (95% CI, 1.1 - 2.1), 1.5-fold greater likelihood of asthma (95% CI, 1.0 - 2.3), 2.8-fold greater likelihood of rhinitis (95% CI, 1.6 - 4.7), and 1.6-fold greater likelihood of eczema (95% CI, 1.1 - 2.3), accounting for gender, secondhand smoke, allergies in both parents, wet cleaning with chemical agents, construction period of the building, limonene, cat and dog allergens, butyl benzyl phthalate (BBzP), and di(2-ethylhexyl)phthalate (DEHP). When the analysis was restricted to the cases, the same unit concentration was associated with 1.8-fold greater likelihood of IgE-sensitization (95% CI, 1.1 - 2.8) compared to the non-IgE sensitized cases. No similar associations were found for the other classes of VOCs.We propose a novel hypothesis that PGEs in indoor air exacerbate and/or induce the multiple allergic symptoms, asthma, rhinitis and eczema, as well as IgE sensitization respectively

    Exhaled nitric oxide and urinary EPX levels in infants: a pilot study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Objective markers of early airway inflammation in infants are not established but are of great interest in a scientific setting. Exhaled nitric oxide (FeNO) and urinary eosinophilic protein X (uEPX) are a two such interesting markers.</p> <p>Objective</p> <p>To investigate the feasibility of measuring FeNO and uEPX in infants and their mothers and to determine if any relations between these two variables and environmental factors can be seen in a small sample size. This was conducted as a pilot study for the ongoing Swedish Environmental Longitudinal Mother and child Asthma and allergy study (SELMA).</p> <p>Methods</p> <p>Consecutive infants between two and six months old and their mothers at children's health care centres were invited, and 110 mother-infant pairs participated. FeNO and uEPX were analysed in both mothers and infants. FeNO was analyzed in the mothers online by the use of the handheld Niox Mino device and in the infants offline from exhaled air sampled during tidal breathing. A 33-question multiple-choice questionnaire that dealt with symptoms of allergic disease, heredity, and housing characteristics was used.</p> <p>Results</p> <p>FeNO levels were reduced in infants with a history of upper respiratory symptoms during the previous two weeks (p < 0.002). There was a trend towards higher FeNO levels in infants with windowpane condensation in the home (p < 0.05). There was no association between uEPX in the infants and the other studied variables.</p> <p>Conclusion</p> <p>The use of uEPX as a marker of early inflammation was not supported. FeNO levels in infants were associated to windowpane condensation. Measuring FeNO by the present method may be an interesting way of evaluating early airway inflammation. In a major population study, however, the method is difficult to use, for practical reasons.</p

    Pulmonary Toxicity and Adjuvant Effect of Di-(2-exylhexyl) Phthalate in Ovalbumin-Immunized BALB/c Mice

    Get PDF
    BACKGROUND: Asthma is a complex pulmonary inflammatory disease, which is characterized by airway hyperresponsiveness, variable airflow obstruction and inflammation in the airways. The majority of asthma is allergic asthma, which is a disease caused by type I hypersensitivity mediated by IgE. Exposures to a number of environmental chemicals are suspected to lead to asthma, one such pollutant is di-(2-ethylheyl) phthalate (DEHP). DEHP is a manufactured chemical that is commonly added in plastic products to make them flexible. Epidemiological studies have revealed a positive association between DEHP exposure and asthma prevalence. METHODOLOGY/PRINCIPAL FINDINGS: The present study was aimed to determine the underlying role of DEHP exposure in airway reactivity, especially when combined with allergen exposure. The biomarkers include pulmonary histopathology, airway hyperresponsiveness (lung function), IgE, IL-4, IFN-γ and eosinophils. Healthy balb/c mice were randomly divided into eight exposure groups (n = 8 each): (1) saline control, (2) 30 µg/(kg•d) DEHP, (3) 300 µg/(kg•d) DEHP, (4) 3000 µg/(kg•d) DEHP, and (5) ovalbumin (OVA)-sensitized group, (6) OVA-combined with 30 µg/(kg•d) DEHP, (7) OVA-combined with 300 µg/(kg•d) DEHP, and (8) OVA-combined with 3000 µg/(kg•d) DEHP. Experimental tests were conducted after 52-day DEHP exposure and subsequently one week of challenge with aerosolized OVA. The principal findings include: (1) Strong postive associations exist between OVA-combined DEHP exposure and serum total IgE (T-IgE), as well as histological findings. These positive associations show a dose-dependent low dose sensitive effect of DEHP. (2) IL-4, eosinophil recruitment and lung function are also indicators for adjuvant effect of DEHP. CONCLUSIONS/SIGNIFICANCE: Our results suggest that except the significant changes of immunological and inflammatory biomarkers (T-IgE, IL-4, IFN-γ and eosinophils), the pulmonary histological (histopathological examination) and physiological (lung function) data also support that DEHP may promote and aggravate allergic asthma by adjuvant effect

    Association of residential dampness and mold with respiratory tract infections and bronchitis: a meta-analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Dampness and mold have been shown in qualitative reviews to be associated with a variety of adverse respiratory health effects, including respiratory tract infections. Several published meta-analyses have provided quantitative summaries for some of these associations, but not for respiratory infections. Demonstrating a causal relationship between dampness-related agents, which are preventable exposures, and respiratory tract infections would suggest important new public health strategies. We report the results of quantitative meta-analyses of published studies that examined the association of dampness or mold in homes with respiratory infections and bronchitis.</p> <p>Methods</p> <p>For primary studies meeting eligibility criteria, we transformed reported odds ratios (ORs) and confidence intervals (CIs) to the log scale. Both fixed and random effects models were applied to the log ORs and their variances. Most studies contained multiple estimated ORs. Models accounted for the correlation between multiple results within the studies analyzed. One set of analyses was performed with all eligible studies, and another set restricted to studies that controlled for age, gender, smoking, and socioeconomic status. Subgroups of studies were assessed to explore heterogeneity. Funnel plots were used to assess publication bias.</p> <p>Results</p> <p>The resulting summary estimates of ORs from random effects models based on all studies ranged from 1.38 to 1.50, with 95% CIs excluding the null in all cases. Use of different analysis models and restricting analyses based on control of multiple confounding variables changed findings only slightly. ORs (95% CIs) from random effects models using studies adjusting for major confounding variables were, for bronchitis, 1.45 (1.32-1.59); for respiratory infections, 1.44 (1.31-1.59); for respiratory infections excluding nonspecific upper respiratory infections, 1.50 (1.32-1.70), and for respiratory infections in children or infants, 1.48 (1.33-1.65). Little effect of publication bias was evident. Estimated attributable risk proportions ranged from 8% to 20%.</p> <p>Conclusions</p> <p>Residential dampness and mold are associated with substantial and statistically significant increases in both respiratory infections and bronchitis. If these associations were confirmed as causal, effective control of dampness and mold in buildings would prevent a substantial proportion of respiratory infections.</p

    The endpoints project: Novel testing strategies for endocrine disruptors linked to developmental neurotoxicity

    Get PDF
    Copyright © 2020 by the authors. Ubiquitous exposure to endocrine-disrupting chemicals (EDCs) has caused serious concerns about the ability of these chemicals to affect neurodevelopment, among others. Since endocrine disruption (ED)-induced developmental neurotoxicity (DNT) is hardly covered by the chemical testing tools that are currently in regulatory use, the Horizon 2020 research and innovation action ENDpoiNTs has been launched to fill the scientific and methodological gaps related to the assessment of this type of chemical toxicity. The ENDpoiNTs project will generate new knowledge about ED-induced DNT and aims to develop and improve in vitro, in vivo, and in silico models pertaining to ED-linked DNT outcomes for chemical testing. This will be achieved by establishing correlative and causal links between known and novel neurodevelopmental endpoints and endocrine pathways through integration of molecular, cellular, and organismal data from in vitro and in vivo models. Based on this knowledge, the project aims to provide adverse outcome pathways (AOPs) for ED-induced DNT and to develop and integrate new testing tools with high relevance for human health into European and international regulatory frameworks.European Union’s Horizon 2020 Research and Innovation Programme, under Grant Agreement number: 825759 (The ENDpoiNTs project)

    A primary health-care intervention on pre- and postnatal risk factor behavior to prevent childhood allergy. The Prevention of Allergy among Children in Trondheim (PACT) study

    Get PDF
    Background: This study aimed to evaluate the impact of a primary prevention intervention program on risk behavior for allergic diseases among children up to 2 years of age. The setting was in ordinary pre- and postnatal primary health care in Trondheim, Norway. Methods: The Prevention of Allergy among Children in Trondheim, Norway (PACT) study invited all pregnant women and parents to children up to 2 years of age in the community to participate in a non-randomized, controlled, multiple life-style intervention study. Interventional topics was increased dietary intake of cod liver oil and oily fish for women during pregnancy and for infants during the first 2 years of life, reduced parental smoking and reduced indoor dampness. A control cohort was established prior to the intervention cohort with “follow up as usual”. Questionnaires were completed in pregnancy, 6 weeks after birth and at 1 and 2 years of age. Trends in exposure and behavior are described. Results: Intake of oily fish and cod liver oil increased statistically significantly among women and infants in the intervention cohort compared to the control cohort. There was a low postnatal smoking prevalence in both cohorts, with a trend towards a decreasing smoking prevalence in the control cohort. There was no change in indoor dampness or in behavior related to non- intervened life-style factors. Conclusions: The dietary intervention seemed to be successful. The observed reduced smoking behavior could not be attributed to the intervention program, and the latter had no effect on indoor dampness

    In utero exposure to butyl benzyl phthalate induces modifications in the morphology and the gene expression profile of the mammary gland: an experimental study in rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Environmental estrogens are exogenous estrogen-mimicking compounds that can interfere with endogenous endocrine systems. Several of these endocrine disruptors have been shown to alter normal development and influence tumorigenesis in experimental models. N-butyl benzyl phthalate (BBP), a widely used plasticizer, is a well-known endocrine disruptor. The aim of this study was to elucidate the effect of prenatal exposure to BBP on the morphology, proliferative index, and genomic signature of the rat mammary gland at different ages.</p> <p>Methods</p> <p><it>In utero </it>exposure was performed by gavage of pregnant Sprague Dawley CD rats with 120mg or 500mg BBP/kg/day from day 10 post-conception to delivery. Female litters were euthanized at 21, 35, 50 and 100 days. The morphology and proliferative index of the mammary gland were studied from whole mount preparations and BrdU incorporation, respectively. Gene expression profile was assessed by microarrays. Several genes found differentially expressed and related to different functional categories were further validated by real time RT-PCR.</p> <p>Results</p> <p>Prenatal exposure of BBP induced delayed vaginal opening and changes in the post-natal mammary gland long after the end of the treatment, mainly by 35 days of age. Exposure to the high dose resulted in modifications in architecture and proliferative index of the mammary gland, mostly affecting the undifferentiated terminal end buds. Moreover, the expression profiles of this gland in the exposed rats were modified in a dose-dependent fashion. Analysis of functional categories showed that modified genes were related to immune function, cell signaling, proliferation and differentiation, or metabolism.</p> <p>Conclusions</p> <p>Our data suggest that <it>in utero </it>exposure to BBP induced a delayed pubertal onset and modified morphology of the mammary gland. These alterations were accompanied by modifications in gene expression previously associated with an increased susceptibility to carcinogenesis.</p
    • …
    corecore