2,993 research outputs found

    Valence-electron transfer and a metal-insulator transition in a strongly correlated perovskite oxide

    Full text link
    We present transport and thermal data for the quadruple-perovskites MCu3(Ti1-xRux)4O12 where 0 < x < 1. A metal-insulator transition (MIT) occurs for Ru concentrations x~0.75. At the same time, the Cu2+ antiferromagnetic state is destroyed and it's magnetic entropy suppressed by Ru on a 1:1 basis. This implies that each Ru transfers an electron to a Cu ion and thus the MIT correlates with filling the Cu 3d shell. The Cu spin entropy in this strongly correlated electron material provides a unique probe among MIT systems.Comment: 15 pages, 4 figures, 1 tabl

    Magnetic anisotropy and geometrical frustration in the Ising spin-chain system Sr5Rh4O12

    Full text link
    A structural and thermodynamic study of the newly synthesized single crystal Sr5Rh4O12 is reported. Sr5Rh4O12 consists of a triangular lattice of spin chains running along the c-axis. It is antiferromagnetically ordered below 23 K with the intrachain and interchain coupling being ferromagnetic (FM) and antiferromagnetic (AFM), respectively. There is strong evidence for an Ising character in the interaction and geometrical frustration that causes incomplete long-range AFM order. The isothermal magnetization exhibits two step-like transitions leading to a ferrimagnetic state at 2.4 T and a FM state at 4.8 T, respectively. Sr5Rh4O12 is a unique frustrated spin-chain system ever found in 4d and 5d based materials without a presence of an incomplete 3d-electron shell.Comment: 15 pages, 4 figure

    Therapeutic potential of a scorpion venom-derived antimicrobial peptide and its homologs against antibiotic-resistant gram-positive bacteria

    Get PDF
    The alarming rise in the prevalence of antibiotic resistance among pathogenic bacteria poses a unique challenge for the development of effective therapeutic agents. Antimicrobial peptides (AMPs) have attracted a great deal of attention as a possible solution to the increasing problem of antibiotic-resistant bacteria. Marcin-18 was identified from the scorpion Mesobuthus martensii at both DNA and protein levels. The genomic sequence revealed that the marcin-18 coding gene contains a phase-I intron with a GT-AG splice junction located in the DNA region encoding the N-terminal part of signal peptide. The peptide marcin-18 was also isolated from scorpion venom. A protein sequence homology search revealed that marcin-18 shares extremely high sequence identity to the AMPs meucin-18 and megicin-18. In vitro, chemically synthetic marcin-18 and its homologs (meucin-18 and megicin-18) showed highly potent inhibitory activity against Gram-positive bacteria, including some clinical antibiotic-resistant strains. Importantly, in a mouse acute peritonitis model, these peptides significantly decreased the bacterial load in ascites and rescued nearly all mice heavily infected with clinical methicillin-resistant Staphylococcus aureus from lethal bacteremia. Peptides exerted antimicrobial activity via a bactericidal mechanism and killed bacteria through membrane disruption. Taken together, marcin-18 and its homologs have potential for development as therapeutic agents for treating antibiotic-resistant, Gram-positive bacterial infection

    Removal of recalcitrant organic compounds from an industrial complex effluent by heterogeneous Fenton-type treatment

    Get PDF
    Because of their chemical complexity, industrial chemi-mechanical pulping effluents are evaporated and burned, in spite of the high associated cost involved in these processes. The aim of this study was to remove recalcitrant compounds from this kind of wastewater using a Fenton-type treatment. The main parameters involved in the process and their influence on the results were determined. Homemade catalysts based on CuO, Fe2O3, NiO and ZnO, supported on γ-Al2O3 have been tested for catalytic oxidation, and the CuO/γ- Al2O3 catalysts showed the greatest effect on total organic carbon (TOC) reduction (52.7%). A series of twolevel factorial experiments was subsequently applied to evaluate the most favorable range of conditions for CuO/γ-Al2O3 application. The studied variables were hydrogen peroxide concentration ([H2O2], g/L), active phase content (metal oxide supported on alumina, %), mass of catalyst (metal oxide/alumina system, g), and reaction temperature (°C). The highest reduction of all parameters was obtained at the superior level of all variables with CuO/γ-Al2O3, achieving reductions of chemical oxygen demand (COD) and TOC between 40 and 50%. Increasing catalyst mass did not produce additional benefit. This variable has a significant effect only on the reduction of aromatic compounds. At its low level, reduction in aromatic content exceeded 80%. Color reduction was influenced only by temperature (maximum reduction of 90%)Fil: Covinich, Laura Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Materiales de Misiones. Universidad Nacional de Misiones. Facultad de Ciencias Exactas Químicas y Naturales. Instituto de Materiales de Misiones; ArgentinaFil: Felissia, Fernando Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Materiales de Misiones. Universidad Nacional de Misiones. Facultad de Ciencias Exactas Químicas y Naturales. Instituto de Materiales de Misiones; ArgentinaFil: Fenoglio, Rosa Juana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; ArgentinaFil: Area, Maria Cristina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Materiales de Misiones. Universidad Nacional de Misiones. Facultad de Ciencias Exactas Químicas y Naturales. Instituto de Materiales de Misiones; Argentin

    Nanomechanics of single keratin fibres: A Raman study of the alpha helix -> beta sheet transition and water effect

    Full text link
    The use of micro-Raman spectroscopy, through chemical bond nano-scale probes, allows the changes in conformations (alpha helix -> beta sheet), chain orientation, disconnection of disulfide bonds (-20%) and the increase of intra and inter-chain distances during the strain to be distinguished. The combination of micro-Raman spectroscopy and a allows a quantitative measure of the extension of chemical bonds in the peptidic chain during loading. The nano-structural transformations of keratin during the strain of human hair in a dry environment (40-60 % relative humidity) and saturated with water have been studied. The water permits the sliding of the chains and decreases the bond energy hair. Spectral analyses and 2D correlation are two coherent and independent methods to follow change the Raman probes which are sensitive to structural . The between nano-mechanical (Raman) and micro-mechanical (strain/stress) analyses confirms the validity of the experimental results, tools and principles used, as well as the agreement with the structural model of keratin fibres described by Chapman & Hearle

    Dietary Protection Against Free Radicals: A Case for Multiple Testing to Establish Structure-activity Relationships for Antioxidant Potential of Anthocyanic Plant Species

    Get PDF
    DNA damage by reactive species is associated with susceptibility to chronic human degenerative disorders. Anthocyanins are naturally occurring antioxidants, that may prevent or reverse such damage. There is considerable interest in anthocyanic food plants as good dietary sources, with the potential for reducing susceptibility to chronic disease. While structure-activity relationships have provided guidelines on molecular structure in relation to free hydroxyl-radical scavenging, this may not cover the situation in food plants where the anthocyanins are part of a complex mixture, and may be part of complex structures, including anthocyanic vacuolar inclusions (AVIs). Additionally, new analytical methods have revealed new structures in previously-studied materials. We have compared the antioxidant activities of extracts from six anthocyanin-rich edible plants (red cabbage, red lettuce, blueberries, pansies, purple sweetpotato skin, purple sweetpotato flesh and Maori potato flesh) using three chemical assays (DPPH, TRAP and ORAC), and the in vitro Comet assay. Extracts from the flowering plant, lisianthus, were used for comparison. The extracts showed differential effects in the chemical assays, suggesting that closely related structures have different affinities to scavenge different reactive species. Integration of anthocyanins to an AVI led to more sustained radical scavenging activity as compared with the free anthocyanin. All but the red lettuce extract could reduce endogenous DNA damage in HT-29 colon cancer cells. However, while extracts from purple sweetpotato skin and flesh, Maori potato and pansies, protected cells against subsequent challenge by hydrogen peroxide at 0°C, red cabbage extracts were pro-oxidant, while other extracts had no effect. When the peroxide challenge was at 37°C, all of the extracts appeared pro-oxidant. Maori potato extract, consistently the weakest antioxidant in all the chemical assays, was more effective in the Comet assays. These results highlight the dangers of generalising to potential health benefits, based solely on identification of high anthocyanic content in plants, results of a single antioxidant assay and traditional approaches to structure activity relationships. Subsequent studies might usefully consider complex mixtures and a battery of assays

    Empowering the Indiana Bridge Inventory Database Toward Rapid Seismic Vulnerability Assessment

    Get PDF
    With the recent identification of the Wabash Valley Seismic Zone in addition to the New Madrid Seismic Zone, Indiana’s Department of Transportation (INDOT) has become concerned with ensuring the adequate seismic performance of their bridge network. While INDOT made an effort to reduce the seismic vulnerability of newly-constructed bridges, many less recent bridges still have the potential for vulnerability. Analyzing these bridges’ seismic vulnerability is a vital task. However, developing a detailed dynamic model for every bridge in the state using information from structural drawings is rather tedious and time-consuming. In this study, we develop a simplified dynamic assessment procedure using readily-available information from INDOT’s Bridge Asset Management Program (BIAS), to rapidly identify vulnerable bridges throughout the state. Eight additional data items are recommended to be added into BIAS to support the procedure. The procedure is applied in the Excel file to create a tool, which is able to automatically implement the simplified bridge seismic analysis procedure. The simplified dynamic assessment procedure and the Excel tool enable INDOT to perform seismic vulnerability assessment and identify bridges more frequently. INDOT can prioritize these bridges for seismic retrofits and efficiently ensure the adequate seismic performance of their assets

    Partial antiferromagnetism in spin-chain Sr5Rh4O12, Ca5Ir3O12 and Ca4IrO6 single crystals

    Full text link
    We report a structural, thermodynamic and transport study of the newly synthesized Sr5Rh4O12, Ca5Ir3O12 and Ca4IrO6 single crystals. These quasi-one-dimensional insulators consist of a triangular lattice of spin chains running along the c-axis, and are commonly characterized by a partial antiferromagnetic (AFM) order, a small entropy removal associated with the phase transitions and a sizable low-temperature specific heat linearly proportional to temperature. Sr5Rh4O12 is defined by an AFM order below 23 K with strong evidence for an Ising character and two step-like transitions in isothermal magnetization leading to a ferrimagnetic state at 2.4 T and a ferromagnetic state at 4.8 T, respectively. Ca5Ir3O12 and Ca4IrO6 are also antiferromagnetically ordered below 7.8 K and 12 K, respectively, and show an unusually large ratio of the Curie-Weiss temperature to the Neel temperature. In particular, Ca5Ir3O12, which includes both Ir4+ and Ir5+ ions, reveals that only S=1/2 spins of the Ir4+ ions are involved in the magnetic ordering whereas S=3/2 spins of the Ir5+ ions remain disordered. All results suggest the presence of the geometrical frustration that causes incomplete long-range AFM order in these quasi-one-dimensional compounds
    corecore