288 research outputs found
Hysteresis in the Mott Transition between Plasma and Insulating Gas
We show that hysteresis can occur in the transition between a neutral plasma
and the insulating gas consisting of neutral pairs bound by Coulomb attraction.
Since the transition depends sensitively on the screening length in the plasma,
regions of bistability occur in density--temperature phase space. We present
numerical results which indicate where these regions occur for systems such as
spin-polarized hydrogen, positronium gas, and excitons in a semiconductor.Comment: 9 pages (Latex/RevTex), 6 postscript figures which are in compressed
and uuencoded file, prepared using the utility "uufiles" and separately
submitted. They should be automatically included with the text when it is
downloaded. Figures also available in hard copy from the authors
([email protected]; [email protected]); paper submitted to
Phys. Rev.
Analysis of false waves in numerical sea simulations
[EN] It is common practice to consider the random sea waves as a succession of discrete waves characterized by individual amplitudes and periods. The zero-up-crossing criterion for discretizing waves, as well as other criteria proposed by different authors, has been found to isolate some discrete waves that do not correspond to physical waves. These false waves alter the wave statistics of random sea waves. A new orbital criterion is proposed to avoid this problem. The orbital criterion has been shown to be consistent and robust with respect to the zero-up-crossing criterion. Furthermore, the new criterion produces a distribution of wave heights in better agreement with the Rayleigh distribution. The mean period of the discrete waves corresponding to the orbital criterion is proved to be T01, while the mean period of the zero-up-crossing waves is T02. A formula relating the Longuet-Higgins spectral bandwidth nu with the relative number of false waves is given.Gimenez Valentin, MH.; Sánchez Carratalá, CR.; Medina, JR. (1994). Analysis of false waves in numerical sea simulations. Ocean Engineering. 21(8):751-764. doi:10.1016/0029-8018(94)90050-7S75176421
Mirror symmetry breaking through an internal degree of freedom leading to directional motion
We analyze here the minimal conditions for directional motion (net flow in
phase space) of a molecular motor placed on a mirror-symmetric environment and
driven by a center-symmetric and time-periodic force field. The complete
characterization of the deterministic limit of the dissipative dynamics of
several realizations of this minimal model, reveals a complex structure in the
phase diagram in parameter space, with intertwined regions of pinning (closed
orbits) and directional motion. This demonstrates that the mirror-symmetry
breaking which is needed for directional motion to occur, can operate through
an internal degree of freedom coupled to the translational one.Comment: Accepted for publication in Phys. Rev.
Photophysical and Cellular Imaging Studies of Brightly Luminescent Osmium(II) Pyridyltriazole Complexes
The series of complexes [Os(bpy)3- n(pytz) n][PF6]2 (bpy = 2,2'-bipyridyl, pytz = 1-benzyl-4-(pyrid-2-yl)-1,2,3-triazole, 1 n = 0, 2 n = 1, 3 n = 2, 4 n = 3) were prepared and characterized and are rare examples of luminescent 1,2,3-triazole-based osmium(II) complexes. For 3 we present an attractive and particularly mild preparative route via an osmium(II) η6-arene precursor circumventing the harsh conditions that are usually required. Because of the high spin-orbit coupling constant associated with the Os(II) center the absorption spectra of the complexes all display absorption bands of appreciable intensity in the range of 500-700 nm corresponding to spin-forbidden ground-state-to-3MLCT transitions (MLCT = metal-to-ligand charge transfer), which occur at significantly lower energies than the corresponding spin-allowed 1MLCT transitions. The homoleptic complex 4 is a bright emitter (λmaxem = 614 nm) with a relatively high quantum yield of emission of ∼40% in deoxygenated acetonitrile solutions at room temperature. Water-soluble chloride salts of 1-4 were also prepared, all of which remain emissive in aerated aqueous solutions at room temperature. The complexes were investigated for their potential as phosphorescent cellular imaging agents, whereby efficient excitation into the 3MLCT absorption bands at the red side of the visible range circumvents autofluorescence from biological specimens, which do not absorb in this region of the spectrum. Confocal microscopy reveals 4 to be readily taken up by cancer cell lines (HeLa and EJ) with apparent lysosomal and endosomal localization, while toxicity assays reveal that the compounds have low dark and light toxicity. These complexes therefore provide an excellent platform for the development of efficient luminescent cellular imaging agents with advantageous photophysical properties that enable excitation and emission in the biologically transparent region of the optical spectrum
Nonadiabatic approach to dimerization gap and optical absorption coefficient of the Su-Schrieffer-Heeger model
An analytical nonadiabatic approach has been developed to study the
dimerization gap and the optical absorption coefficient of the
Su-Schrieffer-Heeger model where the electrons interact with dispersive quantum
phonons. By investigating quantitatively the effects of quantum phonon
fluctuations on the gap order and the optical responses in this system, we show
that the dimerization gap is much more reduced by the quantum lattice
fluctuations than the optical absorption coefficient is. The calculated optical
absorption coefficient and the density of states do not have the
inverse-square-root singularity, but have a peak above the gap edge and there
exist a significant tail below the peak. The peak of optical absorption
spectrum is not directly corresponding to the dimerized gap. Our results of the
optical absorption coefficient agree well with those of the experiments in both
the shape and the peak position of the optical absorption spectrum.Comment: 14 pages, 7 figures. to be published in PR
Dynamics of earthquake nucleation process represented by the Burridge-Knopoff model
Dynamics of earthquake nucleation process is studied on the basis of the
one-dimensional Burridge-Knopoff (BK) model obeying the rate- and
state-dependent friction (RSF) law. We investigate the properties of the model
at each stage of the nucleation process, including the quasi-static initial
phase, the unstable acceleration phase and the high-speed rupture phase or a
mainshock. Two kinds of nucleation lengths L_sc and L_c are identified and
investigated. The nucleation length L_sc and the initial phase exist only for a
weak frictional instability regime, while the nucleation length L_c and the
acceleration phase exist for both weak and strong instability regimes. Both
L_sc and L_c are found to be determined by the model parameters, the frictional
weakening parameter and the elastic stiffness parameter, hardly dependent on
the size of an ensuing mainshock. The sliding velocity is extremely slow in the
initial phase up to L_sc, of order the pulling speed of the plate, while it
reaches a detectable level at a certain stage of the acceleration phase. The
continuum limits of the results are discussed. The continuum limit of the BK
model lies in the weak frictional instability regime so that a mature
homogeneous fault under the RSF law always accompanies the quasi-static
nucleation process. Duration times of each stage of the nucleation process are
examined. The relation to the elastic continuum model and implications to real
seismicity are discussed.Comment: Title changed. Changes mainly in abstract and in section 1. To appear
in European Physical Journal
Remote detection of past habitability at Mars-analogue hydrothermal alteration terrains using an ExoMars Panoramic Camera emulator
JKH is funded by a Birkbeck University of London Graduate Teaching Assistantship. CRC is funded by a Royal Society of Edinburgh Personal Research Fellowship co-funded by Marie Curie Actions. The Aberystwyth research leading to these results has been funded by the UK Space Agency, ExoMars Panoramic Camera (PanCam) Grant Nos. ST/G003114/1, ST/I002758/1, STL001454/1, and the UK Space Agency CREST2 PanCam-2020 research Grant No. ST/L00500X/1. Additional Aberystwyth funding has come from The European Community’s Seventh Framework Programme (FP7/2007-2013), Grant Agreement Nos. 21881 PRoVisG, 241523 PRoViScout, and Grant Agreement No. 312377 PRoViDE. PMG is funded by a UK Space Agency Aurora Fellowship (grants ST/J005215/1 and ST/L00254X/1).A major scientific goal of the European Space Agency’s ExoMars 2018 rover is to identify evidence of life within the martian rock record. Key to this objective is the remote detection of geological substrates that are indicative of past habitable environments, which will rely on visual (stereo wide-angle, and high resolution images) and multispectral (440–1000 nm) data produced by the Panoramic Camera (PanCam) instrument. We deployed a PanCam emulator at four hydrothermal sites in the Námafjall volcanic region of Iceland, a Mars-analogue hydrothermal alteration terrain. At these sites, sustained acidic–neutral aqueous interaction with basaltic substrates (crystalline and sedimentary) has produced phyllosilicate, ferric oxide, and sulfate-rich alteration soils, and secondary mineral deposits including gypsum veins and zeolite amygdales. PanCam emulator datasets from these sites were complemented with (i) NERC Airborne Research and Survey Facility aerial hyperspectral images of the study area; (ii) in situ reflectance spectroscopy (400–1000 nm) of PanCam spectral targets; (iii) laboratory X-ray Diffraction, and (iv) laboratory VNIR (350–2500 nm) spectroscopy of target samples to identify their bulk mineralogy and spectral properties. The mineral assemblages and palaeoenvironments characterised here are analogous to neutral–acidic alteration terrains on Mars, such as at Mawrth Vallis and Gusev Crater. Combined multispectral and High Resolution Camera datasets were found to be effective at capturing features of astrobiological importance, such as secondary gypsum and zeolite mineral veins, and phyllosilicate-rich substrates. Our field observations with the PanCam emulator also uncovered stray light problems which are most significant in the NIR wavelengths and investigations are being undertaken to ensure that the flight model PanCam cameras are not similarly affected.Publisher PDFPeer reviewe
Josephson current in s-wave superconductor / Sr_2RuO_4 junctions
The Josephson current between an s-wave and a spin-triplet superconductor
SrRuO (SRO) is studied theoretically. In spin-singlet / spin-triplet
superconductor junctions, there is no Josephson current proportional to in the absence of the spin-flip scattering near junction interfaces,
where is a phase-difference across junctions. Thus a dominant term of
the Josephson current is proportional to . The spin-orbit
scattering at the interfaces gives rise to the Josephson current proportional
to , which is a direct consequence of the chiral paring symmetry in
SRO
Typification and authorship of Drosera intermedia (Droseraceae)
Drosera intermedia is lectotypified with the herbarium specimen on which the type drawing in the 1798 protologue was based. The collection history of the specimen, the history of the botanical drawing as original material, and the correct nomenclatural author and publication date of the name are presented based on historical notes and literature. Additionally, the global distribution of the species is given, including the first record from Africa
- …