482 research outputs found
Chemostratigraphy of Neoproterozoic carbonates: implications for 'blind dating'
The delta C-13(carb) and Sr-87/Sr-86 secular variations in Neoproteozoic seawater have been used for the purpose of 'isotope stratigraphy' but there are a number of problems that can preclude its routine use. In particular, it cannot be used with confidence for 'blind dating'. The compilation of isotopic data on carbonate rocks reveals a high level of inconsistency between various carbon isotope age curves constructed for Neoproteozoic seawater, caused by a relatively high frequency of both global and local delta C-13(carb) fluctuations combined with few reliable age determinations. Further complication is caused by the unresolved problem as to whether two or four glaciations, and associated negative delta C-13(carb) excursions, can be reliably documented. Carbon isotope stratigraphy cannot be used alone for geological correlation and 'blind dating'. Strontium isotope stratigraphy is a more reliable and precise tool for stratigraphic correlations and indirect age determinations. Combining strontium and carbon isotope stratigraphy, several discrete ages within the 590-544 Myr interval, and two age-groups at 660-610 and 740-690 Myr can be resolved
Time Evolution in Superstring Field Theory on non-BPS brane.I. Rolling Tachyon and Energy-Momentum Conservation
We derive equations of motion for the tachyon field living on an unstable
non-BPS D-brane in the level truncated open cubic superstring field theory in
the first non-trivial approximation. We construct a special time dependent
solution to this equation which describes the rolling tachyon. It starts from
the perturbative vacuum and approaches one of stable vacua in infinite time. We
investigate conserved energy functional and show that its different parts
dominate in different stages of the evolution. We show that the pressure for
this solution has its minimum at zero time and goes to minus energy at infinite
time.Comment: 16 pages, 5 figures; minor correction
Quasiclassical description of transport through superconducting contacts
We present a theoretical study of transport properties through
superconducting contacts based on a new formulation of boundary conditions that
mimics interfaces for the quasiclassical theory of superconductivity. These
boundary conditions are based on a description of an interface in terms of a
simple Hamiltonian. We show how this Hamiltonian description is incorporated
into quasiclassical theory via a T-matrix equation by integrating out
irrelevant energy scales right at the onset. The resulting boundary conditions
reproduce results obtained by conventional quasiclassical boundary conditions,
or by boundary conditions based on the scattering approach. This formalism is
well suited for the analysis of magnetically active interfaces as well as for
calculating time-dependent properties such as the current-voltage
characteristics or as current fluctuations in junctions with arbitrary
transmission and bias voltage. This approach is illustrated with the
calculation of Josephson currents through a variety of superconducting
junctions ranging from conventional to d-wave superconductors, and to the
analysis of supercurrent through a ferromagnetic nanoparticle. The calculation
of the current-voltage characteristics and of noise is applied to the case of a
contact between two d-wave superconductors. In particular, we discuss the use
of shot noise for the measurement of charge transferred in a multiple Andreev
reflection in d-wave superconductors
Andreev reflections in the pseudogap state of cuprate supercondcutors
We propose that, if the pseudogap state in the cuprate superconductors can be
described in terms of the phase-incoherent preformed pairs, there should exist
Andreev reflection from these pairs even above the superconducting transition
temperature, . After giving qualitative arguments for this effect, we
present more quantitative calculations based on the Bogoliubov--de Gennes
equation. Experimental observations of the effects of Andreev reflections above
---such as an enhanced tunneling conductance below the gap along the
copper oxide plane---could provide unambiguous evidence for the preformed pairs
in the pseudogap state.Comment: 5 pages, 1 figur
Abelian and nonabelian vector field effective actions from string field theory
The leading terms in the tree-level effective action for the massless fields
of the bosonic open string are calculated by integrating out all massive fields
in Witten's cubic string field theory. In both the abelian and nonabelian
theories, field redefinitions make it possible to express the effective action
in terms of the conventional field strength. The resulting actions reproduce
the leading terms in the abelian and nonabelian Born-Infeld theories, and
include (covariant) derivative corrections.Comment: 49 pages, 1 eps figur
Theory of charge transport in diffusive normal metal / unconventional singlet superconductor contacts
We analyze the transport properties of contacts between unconventional
superconductor and normal diffusive metal in the framework of the extended
circuit theory. We obtain a general boundary condition for the Keldysh-Nambu
Green's functions at the interface that is valid for arbitrary transparencies
of the interface. This allows us to investigate the voltage-dependent
conductance (conductance spectrum) of a diffusive normal metal (DN)/
unconventional singlet superconductor junction in both ballistic and diffusive
cases. For d-wave superconductor, we calculate conductance spectra numerically
for different orientations of the junctions, resistances, Thouless energies in
DN, and transparencies of the interface. We demonstrate that conductance
spectra exhibit a variety of features including a -shaped gap-like
structure, zero bias conductance peak (ZBCP) and zero bias conductance dip
(ZBCD). We show that two distinct mechanisms: (i) coherent Andreev reflection
(CAR) in DN and (ii) formation of midgap Andreev bound state (MABS) at the
interface of d-wave superconductors, are responsible for ZBCP, their relative
importance being dependent on the angle between the interface normal
and the crystal axis of d-wave superconductors. For , the ZBCP is due
to CAR in the junctions of low transparency with small Thouless energies, this
is similar to the case of diffusive normal metal / insulator /s-wave
superconductor junctions. With increase of from zero to , the
MABS contribution to ZBCP becomes more prominent and the effect of CAR is
gradually suppressed. Such complex spectral features shall be observable in
conductance spectra of realistic high- junctions at very low temperature
On the Origin of the Outgoing Black Hole Modes
The question of how to account for the outgoing black hole modes without
drawing upon a transplanckian reservoir at the horizon is addressed. It is
argued that the outgoing modes must arise via conversion from ingoing modes. It
is further argued that the back-reaction must be included to avoid the
conclusion that particle creation cannot occur in a strictly stationary
background. The process of ``mode conversion" is known in plasma physics by
this name and in condensed matter physics as ``Andreev reflection" or ``branch
conversion". It is illustrated here in a linear Lorentz non-invariant model
introduced by Unruh. The role of interactions and a physical short distance
cutoff is then examined in the sonic black hole formed with Helium-II.Comment: 12 pages, plain latex, 2 figures included using psfig; Analogy to
``Andreev reflection" in superfluid systems noted, references and
acknowledgment added, format changed to shorten tex
flavour tagging using charm decays at the LHCb experiment
An algorithm is described for tagging the flavour content at production of
neutral mesons in the LHCb experiment. The algorithm exploits the
correlation of the flavour of a meson with the charge of a reconstructed
secondary charm hadron from the decay of the other hadron produced in the
proton-proton collision. Charm hadron candidates are identified in a number of
fully or partially reconstructed Cabibbo-favoured decay modes. The algorithm is
calibrated on the self-tagged decay modes and using of data collected by the LHCb
experiment at centre-of-mass energies of and
. Its tagging power on these samples of
decays is .Comment: All figures and tables, along with any supplementary material and
additional information, are available at
http://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-027.htm
Evidence for the strangeness-changing weak decay
Using a collision data sample corresponding to an integrated luminosity
of 3.0~fb, collected by the LHCb detector, we present the first search
for the strangeness-changing weak decay . No
hadron decay of this type has been seen before. A signal for this decay,
corresponding to a significance of 3.2 standard deviations, is reported. The
relative rate is measured to be
, where and
are the and fragmentation
fractions, and is the branching
fraction. Assuming is bounded between 0.1 and
0.3, the branching fraction would lie
in the range from to .Comment: 7 pages, 2 figures, All figures and tables, along with any
supplementary material and additional information, are available at
https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-047.htm
Absolute luminosity measurements with the LHCb detector at the LHC
Absolute luminosity measurements are of general interest for colliding-beam
experiments at storage rings. These measurements are necessary to determine the
absolute cross-sections of reaction processes and are valuable to quantify the
performance of the accelerator. Using data taken in 2010, LHCb has applied two
methods to determine the absolute scale of its luminosity measurements for
proton-proton collisions at the LHC with a centre-of-mass energy of 7 TeV. In
addition to the classic "van der Meer scan" method a novel technique has been
developed which makes use of direct imaging of the individual beams using
beam-gas and beam-beam interactions. This beam imaging method is made possible
by the high resolution of the LHCb vertex detector and the close proximity of
the detector to the beams, and allows beam parameters such as positions, angles
and widths to be determined. The results of the two methods have comparable
precision and are in good agreement. Combining the two methods, an overall
precision of 3.5% in the absolute luminosity determination is reached. The
techniques used to transport the absolute luminosity calibration to the full
2010 data-taking period are presented.Comment: 48 pages, 19 figures. Results unchanged, improved clarity of Table 6,
9 and 10 and corresponding explanation in the tex
- …
