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Introduction

Over the last few decades, Neoprote-
rozoic sedimentary formations have
been investigated intensively for car-
bon, oxygen, sulphur and strontium
isotope ratios. These studies were
motivated by several reasons, among
which deciphering the composition of
ancient seawater and the search for
regional stratigraphic correlations
were of great importance. A substan-
tial database has been created, leading
to the reconstruction of temporal
trends in the carbon and strontium
isotopic composition of Neoprotero-
zoic seawater. One result suggests that
whereas the elemental composition of
seawater appears to have changed
little during the past 545 Myr (Hol-
land, 1984), the isotopic composition
of carbon, oxygen, sulphur and stron-
tium in seawater has varied signi®-
cantly through this interval (Kaufman
and Knoll, 1995). The present authors
®nd these two statements somewhat
internally inconsistent, as both ele-
mental and isotopic compositions
should be closely linked via, and

controlled by, the same tectonic and
biogeochemical changes. However,
the elemental composition of seawater
does not concern us here.
A second result was the demonstra-

tion that carbon and strontium iso-
tope signatures in Neoproterozoic
carbonate sequences can serve as im-
portant tools for both regional and
global correlations (Table 1). Re-
cently, the temporal isotopic trends
of Neoproterozoic seawater have been
applied for age determination and
correlations of Neoproterozoic car-
bonate sequences of the Una Group,
Irece Basin, Brasil (Misi and Veizer,
1998) and for indirect age determina-
tions of nonfossiliferous, medium- to
high-grade marbles in the Norwegian
Caledonides (Trùnnes and Sundvoll,
1995; Melezhik et al., 1997). These age
assessments of the Caledonian mar-
bles constituted a `blind dating' since
no additional stratigraphic controls
were available. During these Nor-
wegian studies several problems were
experienced that are addressed further
here. The main objective of this article
is not to resolve these problems, nor to
contribute a signi®cant amount of new
data, but rather to highlight some
obstacles in the practical application
of carbon and strontium isotope
chemostratigraphy in the Neoprotero-
zoic.

Temporal trends of carbon isotopes

Since Knoll and Walter (1992) and
Derry et al. (1992) constructed the
®rst d13Ccarb age curve for the Neo-
proterozoic±early Cambrian time
interval, at least seven other reference
curves covering various time intervals
of the Neoproterozoic have been pre-
sented (Fig. 1a). It is readily apparent
that when the different age curves are
plotted together they produce a rather
confusing pattern. Below, this compli-
cation is considered in terms of (i) the
age of rocks, (ii) the age of articles,
and (iii) possible spatial and temporal
isotopic ¯uctuations in dissolved inor-
ganic carbon at any given time.

Inconsistencies related to the age
of rocks

The time interval reviewed in this
article, 544±850 Ma, may be separated
into three sections characterized by: (i)
no agreement (except two points of
convergence) between d13Ccarb age
curves published by different authors
(interval 675±850 Ma); (ii) a relatively
high degree of agreement [interval c.
610±675 Ma, Walter et al. (2000) data
are excluded]; and (iii) a very low level
of agreement ( interval 544±610 Ma).
It is obvious (Fig. 1) that the degree

of coincidence between di�erent
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Table 1 List of references to the work with contributions to carbon and strontium isotope signatures in Neoproterozoic carbonate

sequences

Author(s) Area of study Time interval

Pre-1996 studies with limited reliable age constraints

Veizer et al. (1983) Africa and Australia 1000±600 Ma

Knoll et al. (1986) Svalbard and E. Greenland 900±550 Ma

Magaritz et al. (1986) Siberian Platform PC/C*

Tucker (1986a) S. Morocco PC/C

Aharon et al. (1987) Lesser Himalaya PC/C

Lambert et al. (1987) Yangtze Platform PC/C

Magaritz (1989) S. Siberia PC/C

Derry et al. (1989) Svalbard and E. Greenland Upper Proterozoic

Fairchild et al. (1990) Mauritania Neoproterozoic

Kaufman et al. (1991) NW. Canada 780±620 Ma

Kirschvink et al. (1991) Siberia, Morocco and S. China PC/C

Asmeron et al. (1991)

Pokrovsky and Vinogradov (1991) Central Siberia Upper Proterozoic

Aharon and Liew (1992) Compilation PC/C

Brasier (1992) SE. Newfoundland and England Early Cambrian

Derry et al. (1992) Namibia, Svalbard, E. Greenland and Central Australia 900±540 Ma

Kaufman et al. (1992) NW. Canada 1000±540 Ma

Knoll and Walter (1992) Compilation 630±500 Ma

Brasier et al. (1993) Siberia PC/C

Kaufman et al. (1993) Namibia, Svalbard, East Greenland and Arctic Canada 610±540 Ma

Pokrovsky and Gertsev (1993) S. Central Siberia PC/C

Pokrovsky and Missarzhevsky (1993) Central Siberia PC/C

Wickham and Peters (1993) W. North America 770±540 Ma

Corsetti and Kaufman (1994) E. California and W. Nevada PC/C

Brasier et al. (1994a,b) Siberia Lower Cambrian

Narbonne et al. (1994) NW. Canada Neoproterozoic

Smith et al. (1994) Idaho, USA Neoproterozoic

Wang et al. (1994) NW. China PC/C

Kaufman and Knoll (1995) Compilation Neoproterozoic

Knoll et al. (1995a,b,c) NW. Siberia (a) 1600±1200 Ma, (b), (c) PC/C

Post-1996 studies

Kaufman et al. (1996) N. Siberia PC/C

Kennedy (1996) Australia Ca. 600 Ma

Banerjee et al. (1997) India PC/C

Kaufman et al. (1997 Compilation PC/C

Kimura et al. (1997) N. Iran PC/C

Shields et al. (1997) W. Mongolia 750±545 Ma

Bartley et al. (1998) NW. Siberian Platform PC/C

Calver (1998) Tasmania 650±545 Ma

Hofmann et al. (1998) Compilation Neoproterozoic

Kah et al. (1998) Canada 1270±723 Ma

Kennedy et al. (1998) Congo craton 750±570 Ma

Pelechaty (1998) Siberia 565±545 Ma

Saylor et al. (1998) Southern Namibia 548±543 Ma

Jacobsen and Kaufman (1999) Compilation Neoproterozoic

Calver (2000) Australia Neoproterozoic III

Hill and Walter (2000) Australia � 830±750 Ma

Walter et al. (2000) Canada and Australia 840±544 Ma

*PC/C ± Precambrian/Cambrian boundary.

Fig. 1 d13Ccarb reference curves for Neoproterozoic seawater. The reference curves representing time interval (a) 850±500 Ma, (b)
650±500 Ma, all data, and (c) 650±500 Ma, only data published after 1996. Blue arrows indicate age positions of the early (S3),
middle (S2), and late (S1) Sturtian glaciations as well as of the early (V2), and late (V1) Varangerian glaciations by Jacobsen and
Kaufman (1999). Pink arrows indicate age positions of the early (V2), and late (V1) Varangerian glaciations by Pelechaty (1998).
Red arrows indicate age positions of the early (S2) and late (S1) Sturtian glaciations as well as of the early (V2) and late (V1)
Varangerian glaciations by Brasier et al. (2000). Green arrows indicate age positions of the Sturtian±Rapitan (V) and Marinoan±
Varangerian (V) glaciations by Walter et al. (2000).
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age±d13Ccarb curves depends on two
major factors: (i) the availability of
reliable age determinations, and (ii)
the frequency of d13Ccarb ¯uctuations.
A high level of disagreement for the
time interval of 675±850 Ma has ap-
parently been caused by a relatively
high frequency of d13Ccarb ¯uctuations
(Fig. 1a) combined with but few reli-
able U±Pb age determinations. One
age is 746 � 2 Myr obtained on zir-
cons for the Lower Naauwpoort For-
mation in the northern Damara Belt,
Namibia (Hoffman et al., 1996),
which has been assumed to be a
maximum age for the Sturtian±Rapit-
an (as de®ned by Young, 1995) glacial
deposits. Another U±Pb age of
723 � 3 Myr for baddeleyite from
the rocks overlying the Shaler Group,
Canada (Heaman et al., 1992) estab-
lishes a minimum age constraint for
one of the negative d13Ccarb excursions
(Jacobsen and Kaufman, 1999). In
addition, a U±Pb age of 777 � 7 Myr
obtained from volcanites at or near
the base of the Burra Group from the
Adelaide Geosyncline in South Aus-
tralia (Preiss, 2000) has been used to
constrain the age of the Skilogalee
Dolomite (Hill and Walter, 2000). The
limited number of age determinations
results in a high degree of inconsis-

tency among different curves. Conse-
quently, three(?) negative d13Ccarb

excursions reported from the time
interval 675±850 Ma (e.g. Kaufman
and Knoll, 1995) have been assigned
to different ages (Fig. 1a). As all these
negative carbon isotope excursions
have been tightly connected to post-
glacial events, it follows that their age
is completely dependent on the age
constraints of the Sturtian glaci-
ation(s). However, ongoing debates
[Kaufman et al. (1997) and Hoffman
et al. (1998) vs. Kennedy et al. (1998)
and Prave (1999)] have demonstrated
that it is unclear whether there was
one or three glaciations around Stur-
tian time. Consequently, one should
demonstrate not only exact ages
for the Sturtian glaciation(s), but also
prove that there were three negat-
ive d13Ccarb excursions, and not one.
Such an attempt has been made by
Brasier et al. (2000), who reported
two new ages, 723 + 16/±10 and
544 � 3.3 Myr, from Oman. The ®rst
was assigned to a Sturtian age. Brasier
et al. (2000; p. 178) reported that `the
revised chronology con®rms four neg-
ative d13C excursions between c. 723
and 543 Ma, of which the lower two
are associated with glaciations'. Thus,
the date of the Sturtian glaciation

(723 + 16/±10 Ma; Brasier et al.
2000) has been re®ned. The latest
research on and correlation between
Canadian and Australian Neoprote-
rozoic sequences (Walter et al., 2000)
has revealed only two major glacia-
tions, namely Sturtian (Rapitan gla-
cials) at about 700 Ma, and Marinoan
(Ice Brook glacials) at around
600 Ma; a possible minor glaciation
at 570 Ma has been recognized.
The section of convergence, or a

`plateau', placed between c. 610 and
675 Ma, initially appears to be ®rmly
established, though con¯icting with
the curve reported by Walter et al.
(2000). However, this ``isotopic plat-
eau'' has not yet been supported by
any reliable age determinations. Con-
sequently, the younger and partic-
ularly the older age limit for this
section of convergence still require
de®nition (Fig. 1a).
The younger Neoproterozoic sec-

tion (between 544 and 610 Ma;
Fig. 1b) has been supported by two
reliable U±Pb date determinations on
zircons: 543.9 � 1 Ma for the Pre-
cambrian/Cambrian boundary and
548.8 � 1 Ma for a late Vendian,
postglacial, positive d13Ccarb excursion
and ®rst global appearance of Ediac-
aran fossils (Bowring et al., 1993;

Fig. 2 Temporal variations of 87Sr/86Sr in Neoproterozoic carbonates. Sources of data: Asmerom et al. (1991), Burns et al. (1994),
Denison et al. (1998), Derry et al. (1989, 1992, 1994), Jacobsen and Kaufman (1999), Kaufman et al. (1993), Kuznetsov (1998),
Walter et al. (2000).
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Grotzinger et al., 1995). A series of
studies has demonstrated the pres-
ence of three negative d13Ccarb excur-
sions occurring sometime between
544 and 610 Ma (Fig. 1b). However,
there is a very low level of agreement
on age constraints amongst various
papers. The problem of whether there
was one or three negative d13Ccarb

excursions, separated by a series of
returns to highly positive d13Ccarb

values, return us to the number of
glacial episodes: three (e.g. Hoffman
et al., 1998) or only one (e.g. Ken-
nedy et al., 1998; Prave, 1999). The
result of this debate is a very confu-
sing age±d13Ccarb curve pattern as
illustrated by Fig. 1(b).
Finally, considering the number of

glaciations, it is worth pointing out
that the only evidence for multiple
glaciations is from chemostratigraphy.
There is no rock sequence bearing
robust evidence for more than two
total Neoproterozoic glaciations (e.g.
Kennedy et al., 1998; Prave, 1999;
Condon and Prave, 2000).

Inconsistencies related to the time
of investigations

Articles devoted to d13Ccarb reference
curves may be separated into two
groups. The ®rst group, including all
studies performed prior to 1996
(Table 1), should be considered as less
reliable, as the reference d13Ccarb

curves were characterized by poor
age constraints. The ®rst reliable age
constraints for the time interval of
544±850 Ma were obtained in 1993±96
(Heaman et al., 1992; Bowring et al.,
1993; Grotzinger et al., 1995; Hoff-
man et al., 1996). Consequently, the
second group of papers, published
after 1996 (Table 1), might be expec-
ted to show more agreement. How-
ever, this latter group actually shows
very few points of convergence
between various d13Ccarb curves
(Fig. 1a,c). The reference d13Ccarb

curve for 550±580 and 600±670 Ma
(Fig. 1), reported by Kah et al. (1998),
perfectly matches the curve appearing
in Jacobsen and Kaufman (1999).
However, these two curves are totally
in con¯ict between 670 and 800 Ma
(Fig. 1). As they were based essen-
tially on the same database, it is not
possible, at this stage, to account for
the discrepancy. Two other reference
d13Ccarb curves generated for 540±

590 Ma ± one by Pelechaty (1998),
and the other by Saylor et al.
(1998) ± exhibit good agreement
(Fig. 1c). However, both of them con-
¯ict with the interpretation of Jacob-
sen and Kaufman (1999) and Kah
et al. (1998). This kind of discrepancy
leads us again to the problem of
Neoproteozoic glaciations. It can be
exempli®ed by the disagreement be-
tween Jacobsen and Kaufman's (1999)
interpretation, on the one hand, and
the data reported by Pelechaty (1998),
on the other hand. Different age
assignments to the younger Varange-
rian glaciation in these two contribu-
tions (Fig. 1c) are automatically
re¯ected in a 20-Myr-shift for one of
the negative d13Ccarb excursions.

Inconsistencies related to spatial
and temporal isotopic ¯uctuations
in dissolved inorganic carbon

Particularly problematical, and ad-
dressed by Veizer (e.g. Misi and Vei-
zer, 1998; Veizer et al., 1999), are the
complex and unclear reasons for the
quite large variations in d13Ccarb at
any given time. In the Phanerozoic,
and even today, d13Ccarb ¯uctuates by
the order of 5& (Veizer et al., 1999).
This important fact has apparently
rarely been considered as a potential
cause for the discrepancies observed in
the Neoproterozoic database. For in-
stance, the section of convergence, or
the 610±670 Ma isotopic plateau, ex-
hibits no internal, age-related ¯uctua-
tions of d13Ccarb. However, the upper
d13Ccarb limit of the section has
changed (Fig. 1a) from + 6& (Derry
et al., 1992) to + 7.5& (Kaufman
and Knoll, 1995) through + 8.5&
(Jacobsen and Kaufman, 1999) to
c. + 12& (Brasier et al., 2000). This
could well be caused by a spatial
isotopic variation in dissolved inor-
ganic carbon in¯uenced by local fac-
tors. Consequently, the global
seawater d13Ccarb value, equilibrated
with atmospheric CO2, might not yet
have been unambiguously established.
Another example is the remarkably

variable magnitude of both negative
and positive d13Ccarb excursions, as
evident from the comparison of dif-
ferent databases. For instance, the
negative d13Ccarb excursion occurring
at the post-earlier Varangerian ice age
has been estimated at ±2.5& (Derry
et al., 1992; Pelechaty, 1998), ±3&

(Kaufman and Knoll, 1995), ±4&
(Saylor et al., 1998), and ±5& (Jacob-
sen and Kaufman, 1999). Pokrovsky
and Gertsev (1993) have even reported
d13Ccarb as low as ±8 to ±10&. The
latter values were obtained from a
250±1000 m-thick, well-preserved car-
bonate formation developed over a
distance of 1000 km. All these incon-
sistencies might well be caused by
local isotopic variations in dissolved
inorganic carbon, and therefore the
representative global d13C values re-
main unclear. Moreover, the problem
of stratigraphic applications of strong,
basin-wide 13C depletion recorded in
marine carbonates has been discussed
in detail by Calver (2000). Based on a
study of the Adelaide Rift Complex in
Australia, he concluded that `the
strong overprint of strati®cation on
both organic and carbonate d13C stra-
tigraphy needs to be recognized before
global correlation¼ can be attempted'
(Calver, 2000, p. 140). He also argued
that d13Ccarb values (ranging from ±3
to ±10&) obtained from the Wonoka
Formation do not mirror a global
seawater signal. Yet, d13Ccarb of
)10.5& appeared in a compilation
by Walter et al. (2000; Fig. 29, p. 414)
as a marine d13Ccarb at 545 Ma.
A series of d13Ccarb negative shifts

could be advantageous in carbon iso-
tope stratigraphy, providing a poten-
tial tool for detailed stratigraphic
correlations. However, all puzzling
aspects of the Neoproterozoic negat-
ive d13C excursions are compounded
by the enigmatic nature of postglacial
`cap carbonates' (Walter and Bauld,
1983; Tucker, 1986b; Singh, 1987;
Fairchild, 1993). With the existing
lack of consensus on the nature of
the Neoproterozoic cap carbonates,
the stratigraphic implication of
d13Ccarb negative shifts is largely a
matter of debate.
Grotzinger and Knoll (1995) sug-

gested an interesting interpretation:
the postglacial cap dolostones and
limestones in the Neoproterozoic
might well be related to an early stage
of overturn of the strati®ed ocean.
They suggested further that the car-
bonates were associated with the up-
welling of deep, anoxic, 13C-depleted,
HCO3

±-saturated water supplemented
by that from perpetually Ca- and Mg-
supersaturated shallow water. Several
consequences follow. First, although
upwelling of deep water was a
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large-scale phenomenon it was not a
global one. There must have been vast
shelf zones, inter- and intracontinental
seas which were not affected by the
deep, anoxic, 13C-depleted, upwelled
water. Secondly, it is unlikely that
carbonates precipitated from upwelled
water were in isotopic equilibrium with
the coeval atmosphere and surface
water. Thirdly, the isotopic composi-
tion of such carbonates should exhibit
a wide range depending on deep water/
surface water ratios (e.g. Kennedy,
1996). Consequently, the correlation
of postglacial carbonates by means of
carbon isotope chemostratigraphy,
which is solely based on negative d13C
values, could be totally misleading.

Neoproterozoic trends of strontium
isotopes

Veizer and Compston (1976) reported
a ®rst seawater 87Sr/86Sr curve for the
whole of the Precambrian and dem-
onstrated a sharp increase in the
87Sr/86Sr ratio of seawater between
2.5 and 2.0 Ga. Later, more detailed
data obtained for the Neoproterozoic
(Veizer et al., 1983) exhibited low
87Sr/86Sr values at around 900 Ma.
This was assigned to the ocean's
response to a major hydrothermal
event. A substantial amount of new
isotopic data has been generated
through the years by Derry et al.
(1989, 1992, 1994), Asmerom et al.
(1991) and Kaufman et al. (1993,
1996). This database has recently been
screened for postsedimentary alter-
ation, and age constraints which `sig-
ni®cantly improves the resolution of
the 87Sr/86Sr record for the late Neo-
proterozoic to Early Cambrian' (Jac-
obsen and Kaufman, 1999; p. 44).
However, the Neoproterozoic±early
Cambrian time interval can usefully
be divided into two sections. The
younger section demonstrates a
marked rise in the 87Sr/86Sr from
0.7066 at 590 Ma up to 0.7085 at the
Precambrian±Cambrian boundary
(Fig. 2), which seems to be well estab-
lished. In contrast, the 87Sr/86Sr tem-
poral trend for the older section,
spanning from 850 to 590 Ma, has
no consensus (Fig. 2). Jacobsen and
Kaufman (1999) have already dis-
cussed the inconsistency between their
database and that reported from the
Karatau Group which terminates
the Riphean stratotype section on the

western slope of the southern Urals
(e.g. Kuznetsov et al., 1997; Kuznet-
sov, 1998). The 87Sr/86Sr ratios ob-
tained from 890 to 670 Myr-old
carbonate formations of the Karatau
Group are uniquely low, ranging be-
tween 0.7053 and 0.7062, whereas the
data compiled by Jacobsen and Kauf-
man (1999) exhibit far more radiogen-
ic values (Fig. 2).
Below, these discrepancies are

considered in terms of (i) the age
constraints, (ii) the depositional
environments, (iii) the screening for
postdepositional alteration, and (iv)
the laboratory techniques.

Inconsistencies related to the age
constraints

It is apparent that the discrepancies
associated with the older time interval
of 850±590 Ma, which is represented
by the Shaler, Akademikerbreen, Po-
larisbreen, and Karatau groups, might
well be caused by the lack of reliable
age determinations.
The Shaler Group, from Victoria

Island in Canada (Asmerom et al.,
1991) lies unconformably on a sequ-
ence containing 1.2-Gyr-old lavas. It
is overlain unconformably by ba-
saltic lavas dated by the U±Pb method
on baddeleyite to be 723 � 3 Myr
old. The palaeomagnetic data for the
Mackenzie Supergroup, correlated
with the Shaler Group, indicate that
the latter is younger than 880 Myr
(Asmerom et al., 1991 and references
therein). More recent isotopic work
has demonstrated that the maximum
age of Shaler Group carbonate rocks
is not more than 802 � 10 Myr (Jac-
obsen and Kaufman, 1999 and refer-
ences therein). Although Jacobsen and
Kaufman (1999) have re®ned the age
of Shaler carbonate rocks and as-
signed it to 740 Myr, they largely used
circular arguments involving the car-
bon and strontium isotopic trends
for the correlation. Moreover, in the
recent publication by Walter et al.
(2000) the age of the Shaler Group
carbonate rocks (840±834 Myr,
table 7, p. 407) was adopted from
Asmerom et al. (1991). As far as the
Akademikerbreen and Polarisbreen
groups are concerned, there has been
no isotopic age published yet. It is
only known that the Akademikerb-
reen Group rocks contain acritarchs
of latest Late Riphean age, and the

shales at the base of the Polarisbreen
Group might be a correlative of the
Varanger tillites in northern Norway
(e.g. Knoll et al., 1986). However, the
age estimate of the two-stage Varan-
gerian glaciation determined by the
Rb±Sr method on ®ne clay minerals
from the Norwegian tillites exhibits a
wide range of ages from 630 to
560 Myr (Gorokhov et al., 1996).
The geochronological baseline for

the 850±670 Ma interval of Kuznet-
sov's 87Sr/86Sr curve (Fig. 2) is based
on the Pb±Pb and Rb±Sr dates for the
carbonate and siliciclastic rocks of the
Karatau Group consisting of (bottom
to top) the Inzer, Minyar and Uk
formations. Two Pb±Pb dates of
836 � 25 and 780 � 80 Ma on lower
Inzer Formation limestone (Ovchin-
nikova et al., 1998) and middle
Minyar Formation dolostone (Ovchi-
nnikova et al., 2001) provide deposi-
tional age constraints for the lower
part of the Karatau Group. Both the
ages and the 87Sr/86Sr values are
roughly consistent with the Shaler
Group data (Jacobsen and Kaufman,
1999).
However, the upper portion of the

Karatau Group, with an inferred age
of 760±670 Myr, speci®cally demon-
strates low 87Sr/86Sr values (Fig. 2),
thus con¯icting with the previously
reported data (see Jacobsen and
Kaufman, 1999). The age of the Uk
Formation based on Rb±Sr and K±Ar
techniques on glauconites has been
constrained to 688 � 10 and 670 �
10 Myr, respectively (Gorozhanin and
Kutyavin, 1986). Podkovyrov et al.
(1998), however, inferred several
stratigraphic hiatuses of unknown
duration in the Karatau carbonate
succession and thus opened the possi-
bility that the geological record of the
Karatau succession is not complete.
At the same time, there is a paucity of
strontium isotopic data from the time
interval 690±600 Ma (Fig. 2). Jacob-
sen and Kaufman (1999) have not
reported any 87Sr/86Sr data from
between 690 and 650 Ma, and thus
Kuznetsov's data (0.07054±0.07060)
are the only isotopic record available
for this period of time.

Inconsistencies related to depositional
environments

Sr isotopic ratios measured from
sedimentary carbonates re¯ect mixing
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of strontium delivered by continental
runo� and that derived from sea-
water±basalt interaction (e.g. Veizer,
1989). Therefore, transitions from
open marine to restricted marine to
lacustrine environments exhibit regu-
lar changes in 87Sr/86Sr: restricted and
lacustrine carbonates become enriched
in 87Sr. There are some exceptions: in
a certain type of rift basin ¯oored by
basalts (e.g. Red Sea, Friedman, 1996)
shore-associated carbonates may be
depleted in 87Sr as compared to coeval
carbonates precipitated from well-
mixed seawater. However, examples
of unambiguous resolution between
marine vs. nonmarine environments
in transgressive/regressive carbonate
sequences have been reported from
both the Cenozoic (McCulloch et al.,
1989) and the Palaeoproterozoic
(Gorokhov et al., 1998; Kuznetsov
et al., 1999). It is not entirely clear
whether all Neoproterozoic carbonate
formations studied for strontium iso-
topes were deposited in open marine
basins. As far as the Karatau Group is
concerned, the carbonate rocks of the
Inzer, Minyar and Uk formations
were accumulated in relatively deep-
water marine and shallow-marine
settings. No evidence of evaporitic
sediments has been found in the
Karatavian carbonate sequences
(Maslov, 1997). In contrast, the lower
part of the Shaler Group includes
several horizons of deltaic sediments,
and the upper part contains evaporitic
intercalations, restricted coastal car-
bonates and red beds (Asmerom et al.,
1991 and references therein). Akadem-
ikerbreen Group carbonate sediments
also might have been precipitated in a
partly restricted basin, as they are
enriched in Mn relative to the high
background Sr content, and include
calcian dolomites (Derry et al., 1989,
1992). Based on these facts, the
Karatau carbonate sequences are by
far the best match with deposition in
an open marine setting.

Inconsistencies related to the
screening of carbonate material

Conventional geochemical assessment
for postdepositional alteration of car-
bonate is based largely on the relative
abundances of Mn, Fe, Rb and Sr
(e.g. Brand and Veizer, 1980; Gorok-
hov, 1996). Elemental ratios, such as
Mn/Sr, Fe/Sr, Ca/Sr andRb/Sr, as well

as carbon and oxygen isotopes, are
widely used as geochemical criteria for
revealing the least disturbed Rb±Sr
systems. Di�erent authors, however,
use not only dissimilar values of the
same ratios, but also dissimilar combi-
nations of these ratios. Asmerom et al.
(1991) used Mn/Sr < 1.5 and Rb/
Sr < 0.004 to identify altered samples,
whereas Derry et al. (1992) suggested
for Mn/Sr < 1, Rb/Sr < 0.002, and
Ca/Sr < 1000. Kaufman et al. (1993)
suggested Mn/Sr < 1.5 and Rb/
Sr < 0.0005, whereas Kuznetsov et al.
(1997) and Semikhatov et al. (1998)
advocated Mn/Sr £ 0.2, Fe/Sr £ 5.0
and Rb/Sr £ 0.0010. In all cases the
choices of the elemental ratios and their
values are empirical and arbitrary.
However, the elemental ratios depend
not only on the extent of postsedimen-
tary alteration, but also on the initial
carbonate composition. The conse-
quences of different criteria applied
for the recognition of altered samples
can be exempli®ed by the following. If
Mn/Sr £ 0.2 (as suggested by Kuznet-
sov et al., 1997) is applied for ®ve 609±
610 Myr-old limestone samples from
Svalbard andEastGreenland (Table 1,
p. 416, Kaufman et al., 1993), only
two, each having 87Sr/86Sr of 0.7066,
would pass this test. Yet the `best
preserved' 610 Myr-old samples (as
based on other criteria) shown by
Jacobsen and Kaufman (1999) have
87Sr/86Sr of 0.7074. Thus, it is believed
that at least some of the inconsistencies
presented in Fig. 2 might well be rela-
ted to different approaches applied to
geochemical screening.
The work by MontanÄ ez et al. (1996)

documenting an elaborate screening
approach is considered to represent
state-of-the-art in isotopic studies of
ancient carbonates. Another related
and serious problem is that only a very
limited number of samples per time
unit (very often a single sample) has
been used in most studies of recon-
struction of 87Sr/86Sr ratios in Neopro-
terozoic seawater. Evidently, a limited
number of samples is seldom suf®cient
even to recognize alteration trends and
therefore should not be used for the
reconstruction of 87Sr/86Sr ratios.

Inconsistencies related to the laborat-
ory processing of carbonate material

Many authors who measured stron-
tium isotopes on marine carbonate

rocks have used a preliminary labor-
atory leaching of carbonate material
for removal of late, recrystallized car-
bonate phases and/or contaminating
constituents (Gao, 1990; Kupecz and
Land, 1991; Ohde and Elder®eld,
1992; Gorokhov et al., 1995; Kuznet-
sov et al., 1997; Semikhatov et al.,
1998; McArthur et al., 1993a, 1993b).
Acetic acid, ammonium acetate and
chloride are the reagents commonly
used. Details of the technique have
been discussed by McArthur, 1994).
Although some scientists (Gao, 1990;
Kupecz and Land, 1991) use leaching
strictly for removal of the Sr bound to
clay components, others (Gorokhov
et al., 1995) suggest this procedure for
removal of both clay-bound Sr and
late, 87Sr-rich, calcite cement. The 1 NN

ammonium acetate procedure appears
to involve the most appropriate leach-
ing reagent: it removes not only the
clay-bound Sr (Morton, 1985; Gorok-
hov et al., 1994), but also late calcite
phases (Wada and Furumura, 1994).
An experimental study has shown that
87Sr/86Sr values, obtained from Riph-
ean nonmetamorphosed limestones by
selective leaching, are lower by
0.0002±0.0019 than values measured
from bulk carbonate components
without leaching (e.g. Gorokhov
et al., 1995). Thus, Sr isotopic values
obtained with the leaching procedure
are less enriched in 87Sr and likely the
best proxy for initial seawater compo-
sition. Therefore, the inconsistencies
exposed in Fig. 2 should also be
considered in terms of various labor-
atory techniques.

Concluding remarks: ef®cacy
of isotope stratigraphy

The compilation presented in Fig. 1
demonstrates that, in general, it is very
unlikely that carbonate formations
deposited between 850 and 544 Ma
can currently be correlated unambig-
uously or dated indirectly by means of
carbon isotope stratigraphy if no
other independent stratigraphic or
isotopic (i.e. 87Sr/86Sr ratios) controls
are provided (`blind experiments'). If a
carbonate sequence is characterized
by negative d13Ccarb (to less than
)4&), this may provide an approxi-
mate age restriction: it could not have
been deposited between 670 and
610 Ma, or even as long ago as
700 Ma providing that the 680 Ma
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assignment for the negative d13Ccarb

excursion, which appeared in Kah
et al. (1998), is an artefact or error
(Fig. 1a). Rather, it might have
formed either at around 740±700 Ma
(Sturtian glaciation) or between 590
and 540 Ma (late to post-Varangerian
glaciation) (Fig. 1a). These alterna-
tives may be further resolved by
means of `strontium isotope stratigra-
phy' (see discussion below). d13Ccarb

values ¯uctuating around zero might
be found throughout the 850±544 Ma
interval, whereas d13Ccarb > + 5&
indicates that the carbonates might
have been deposited between 670 and
610 Ma.
Although the causes of the 87Sr/86Sr

inconsistencies in Fig. 2 for 760±
670 Ma are not fully understood,
one should prefer the lower 87Sr/
86Sr curve (e.g. Veizer and Comps-
ton, 1974) unless the inconsistencies
involve improper age constraints
(Fig. 2). Under these conditions stron-
tium isotope data, even when used
alone, can clearly discriminate car-
bonate formations deposited prior to
670 Ma (87Sr/86Sr £ 0.7063) from
those formed between 670 and
544 Ma (87Sr/86Sr ³ 0.7063, Fig. 2).
Moreover, as the result of a progres-
sive and rather uniform increase of
87Sr/86Sr from 0.7061 to 0.7085, sev-
eral discrete age-groups of carbonate
formations may be resolved within the
time interval 590±544 Ma (Fig. 2).
The combined application of

strontium and carbon isotope data
may further resolve the age uncer-
tainties for the low-d13Ccarb carbon-
ates (see above). Low strontium
isotope ratios (< 0.7063) combined
with low-d13Ccarb values are indicat-
ive of an age > 670 Myr, whereas
87Sr/86Sr > 0.7061 would place the
age of the rocks between 590 and
544 Myr.
Thus, following an earlier statement

by Veizer (e.g. Misi and Veizer, 1998),
it is concluded herein that, at the
present time, strontium isotope strati-
graphy provides a more de®nitive and
precise tool for stratigraphic correla-
tions and indirect age determinations
compared to the d13Ccarb approach.

Some speci®c steps recommended
in future isotope stratigraphy studies

The current practice in isotope studies
of Precambrian carbonates rarely

includes thorough investigation and
documentation of depositional envi-
ronments. As contemporaneous open
marine, restricted marine, lagoonal,
and lacustrine carbonates may be
characterized by very di�erent isotop-
ic compositions, the study of deposi-
tional environments and palaeofacies
analysis are strongly suggested to be
an essential part of all isotopic studies
attempting to reconstruct the compo-
sition of seawater.
It is already apparent that the

isotopic composition of carbonates is
subject to considerable internal vari-
ability, and therefore the isotopic data
obtained from any single section
should not be used for the reconstruc-
tion of the seawater composition until
it is established, by comparison with a
series of coeval distant sections, to be
representative for the time interval
studied.
Without exceptions, all ancient car-

bonates experienced some degree of
postdepositional alteration and modi-
®cation of carbon, oxygen and stron-
tium isotope systems. Given the
condition that all necessary geochem-
ical, mineralogical, and petrological
precautions have been undertaken to
identify the alteration trends, a limited
number of samples and analyses are
considered to be insu�cient for the
recognition of alteration trends and
thus such databases should not be
used for the reconstruction of the
seawater composition.
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