36 research outputs found

    Vegetation history, recent dynamics and future prospects of a Hungarian sandy forest-steppe reserve: forest-grassland relations, tree species composition and size-class distribution

    Get PDF
    Pannonian forest-steppes host a high number of endemic species and contribute to landscape-scale heterogeneity. Alterations in the proportion of forests and grasslands due to changes in land-use practice and climatic parameters can have serious nature conservation consequences. Hypotheses about forest-steppe dynamics have rarely been verified by detailed analyses, especially for the sandy forest-steppes. We integrated historical analysis, aerial photo interpretation and field investigation to determine how vegetation of a sandy forest-steppe has changed, how current dynamical processes operate and how native and exotic tree species regenerate under present conditions. The vegetation of the study area before the onset of major anthropogenic environmental transformations in the Carpathian Basin may have been a mosaic of forested and unforested patches. However, there is strong evidence that after heavy deforestation, the region was almost completely treeless between the 15th and the 19th centuries. Forest cover was able to recover by the 1800s but the lack of forested areas in the region for centuries explains why forest patches are still poor in species. Grasslands, which existed continuously, are more diverse, supporting several rare and endemic species. From 1953 till 2013, 72.45% of the area proved to be stable, but 27.55% showed clear dynamical character, changing either from forest to grassland, or vice versa. Thus, cyclic dynamics can occur in sandy forest-steppes. We found that forest patches of different size, differently exposed edges and grasslands provide different habitats for the tree species. Exotic species were present in large numbers, probably due to the small size of the reserve and the lack of a buffer zone

    Meat production and maintaining biodiversity: Grazing by traditional breeds and crossbred beef cattle in marshes and grasslands

    Get PDF
    Questions: Sustainable rangeland utilization considering traditions and economic reasons is compulsory for harmonising the needs of the agricultural and nature conservation sectors. For proper rangeland management it is crucial to compare the grazing effects of traditional breeds and crossbred animals of the same species that might have different effects on the rangelands. To fill this knowledge gap, in a grazing experiment, we investigated the effect of cattle breeds on the vegetation to test the effects on nature conservation value and agricultural production value. We hypothesized that the effects of cattle grazing on habitat conservation values and forage quality depend on the grazing breed, because breeds differ in selectivity, body size and trampling effect. Location: Marshes and alkaline wet grasslands in Hortobágy National Park, Hungary. Methods: We recorded the percentage cover of vascular plants in three consecutive years in a total of 60 plots in 12 areas grazed by traditional (0.61 AU/ha) and largesized crossbred beef cattle (0.68 AU/ha). Results: We found that the effect of cattle breed on the habitat conservation values and forage quality is dependent on the habitat type. The traditional breed maintained a significantly higher species number and Shannon diversity in marshes than the crossbred beef cattle. Grazing of crossbred cattle led to decreasing moisture indicator values in marsh habitats. Conclusions: Our findings revealed that traditional breeds should be prioritized in the management of wet alkaline grasslands and marshes. Crossbred beef cattle might be a substitute but only in case traditional breeds are not available for the management of alkaline wet grasslands. In marshes, however, we recommend prioritizing the traditional breeds as they maintain higher diversity compared to crossbred beef cattle

    GrassPlot - a database of multi-scale plant diversity in Palaearctic grasslands

    Get PDF
    GrassPlot is a collaborative vegetation-plot database organised by the Eurasian Dry Grassland Group (EDGG) and listed in the Global Index of Vegetation-Plot Databases (GIVD ID EU-00-003). GrassPlot collects plot records (releves) from grasslands and other open habitats of the Palaearctic biogeographic realm. It focuses on precisely delimited plots of eight standard grain sizes (0.0001; 0.001;... 1,000 m(2)) and on nested-plot series with at least four different grain sizes. The usage of GrassPlot is regulated through Bylaws that intend to balance the interests of data contributors and data users. The current version (v. 1.00) contains data for approximately 170,000 plots of different sizes and 2,800 nested-plot series. The key components are richness data and metadata. However, most included datasets also encompass compositional data. About 14,000 plots have near-complete records of terricolous bryophytes and lichens in addition to vascular plants. At present, GrassPlot contains data from 36 countries throughout the Palaearctic, spread across elevational gradients and major grassland types. GrassPlot with its multi-scale and multi-taxon focus complements the larger international vegetationplot databases, such as the European Vegetation Archive (EVA) and the global database " sPlot". Its main aim is to facilitate studies on the scale-and taxon-dependency of biodiversity patterns and drivers along macroecological gradients. GrassPlot is a dynamic database and will expand through new data collection coordinated by the elected Governing Board. We invite researchers with suitable data to join GrassPlot. Researchers with project ideas addressable with GrassPlot data are welcome to submit proposals to the Governing Board

    Shrub Encroachment Under the Trees Diversifies the Herb Layer in a Romanian Silvopastoral System

    No full text
    Rangelands with scattered trees are complex and dynamic systems with a long history in Europe. Generally referred to as “wood-pastures,” they are considered to have outstanding conservation value. Thorny shrubs are important for supporting the biodiversity of these wooded rangelands, as well as facilitating the regeneration of trees by acting as nurse species. We assess the direct effects of temporary shrub encroachment under the cover of mature sparse trees on overall plant and habitat diversity. We surveyed the herb layer of the main landscape features of a wood-pasture: open pasture, trees with a grass understory, trees with shrubs, and adjacent forest edges. The herb layer under trees with shrubs resembled that of forest edges more than open pastures and trees with grass. Trees with grass had a higher cover of ruderal species than trees with shrubs, while forest edges and open pastures had a lower cover of them. Forest species were absent from open pastures but were well represented in the other sites. The herb layer of trees with shrubs and forest edges had similar cover values, while trees with grass had a significantly lower cover of herbs than the other types. Trees with shrubs had higher species richness than any of the other three landscape features and had a much higher proportion of diagnostic species. We conclude that the scattered trees and shrubs of the studied silvopastoral system have additive facilitative effects on their understory, probably through modifying the microenvironment and grazing pressure, leading to the formation of temporary diversity hot spots with distinct vegetation. Thus maintaining a moderate level of shrub-encroachment under sparse trees is recommended for not only creating safe havens for tree recruitment but also increasing the overall species and habitat diversity of wood-pastures.The Rangeland Ecology & Management archives are made available by the Society for Range Management and the University of Arizona Libraries. Contact [email protected] for further information
    corecore