702 research outputs found
Equation of state and elastic properties of face-centered-cubic FeMg alloy at ultrahigh pressures from first-principles
We have calculated the equation of state and elastic properties of
face-centered cubic Fe and Fe-rich FeMg alloy at ultrahigh pressures from first
principles using the Exact Muffin-Tin Orbitals method. The results show that
adding Mg into Fe influences strongly the equation of state, and cause a large
degree of softening of the elastic constants, even at concentrations as small
as 1-2 at. %. Moreover, the elastic anisotropy increases, and the effect is
higher at higher pressures.Comment: 6 figure
COMPTEL Observations of AGN at MeV-Energies
The COMPTEL experiment aboard CGRO, exploring the previously unknown sky at
MeV-energies, has so far detected 10 Active Galactic Nuclei (AGN): 9 blazars
and the radio galaxy Centaurus A. No Seyfert galaxy has been found yet. With
these results COMPTEL has opened the field of extragalactic Gamma-ray astronomy
in the MeV-band.Comment: 4 pages, 2 figures including 1 color plot, to appear in the
Proceedings of the 3rd INTEGRAL Workshop "The Extreme Universe", held in
Taormina, Italy, 14-18 September 199
RXTE Observations of the Anomalous Pulsar 4U 0142+61
We observed the anomalous X-ray pulsar 4U 0142+61 using the Proportional
Counter Array (PCA) aboard the Rossi X-ray Timing Explorer (RXTE) in March
1996. The pulse frequency was measured as f = 0.11510039(3) Hz with an upper
limit of df/dt < 4 * 10^(-13) Hz/s upon the short term change in frequency over
the 4.6 day span of the observations. A compilation of all historical
measurements showed an overall spin-down trend with slope df/dt = (-3.0 +/-
0.1) * 10^(-14) Hz/s. Searches for orbital modulations in pulse arrival times
yielded an upper limit of a_x sin i < 0.26 lt-s (99% confidence) for the period
range 70 s to 2.5 days. These limits combined with previous optical limits and
evolutionary arguments suggest that 4U 0142+61 is probably not a member of a
binary system.Comment: 20 pages (LaTeX) including 7 figures. Accepted for publication in the
Astrophysical Journa
Analysis of Flow Angularity Repeatability Tests in the NTF
An extensive data base of flow angularity repeatability measurements from four NTF check standard model tests is analyzed for statistical consistency and to characterize the results for prediction of angle-of-attack uncertainty for customer tests. A procedure for quality assurance for flow angularity measurements during customer tests is also presented. The efficacy of the procedure is tested using results from a customer test
Comptel observations of the quasar PKS 0528+134
During Phase I and Phase II of the CGRO‐mission, the quasar PKS 0528+134 was in the field of view of the COMPTEL instrument during several viewing periods. The quasar was detected by COMPTEL mainly at energies above 10 MeV. Below 10 MeV there is evidence for the source during some CGRO viewing periods, while below 3 MeV no signal is detected. The detections and non‐detections during different viewing periods follow the trend seen by EGRET, thereby indicating a time‐variable MEV‐flux of the quasar. The COMPTEL spectral results together with the simultaneously measured EGRET spectrum, indicate a spectral break in the upper part of the COMPTEL energy range at energies between 10 MeV and 30 MeV
Search for gamma‐ray emission from AGN with COMPTEL
The COMPTEL data (∼0.7–30 MeV) were searched for emission from AGN. Four sources have been detected so far: the quasars 3C 273, 3C 279, PKS 0528+134, and the radio galaxy Centaurus A. 3C 273 and 3C 279 were detected in CGRO observation period 3 with quite different spectral shapes. There is also evidence for 3C 273 at a weak flux level in observation period 11. The quasar PKS 0528+134 was detected above 3 MeV as part of a search for AGN already observed by EGRET. Cen A was seen up to 3 MeV by combining data from different observation periods
The COMPTEL instrumental line background
The instrumental line background of the Compton telescope COMPTEL onboard the
Compton Gamma-Ray Observatory is due to the activation and/or decay of many
isotopes. The major components of this background can be attributed to eight
individual isotopes, namely 2D, 22Na, 24Na, 28Al, 40K, 52Mn, 57Ni, and 208Tl.
The identification of instrumental lines with specific isotopes is based on the
line energies as well as on the variation of the event rate with time,
cosmic-ray intensity, and deposited radiation dose during passages through the
South-Atlantic Anomaly. The characteristic variation of the event rate due to a
specific isotope depends on its life-time, orbital parameters such as the
altitude of the satellite above Earth, and the solar cycle. A detailed
understanding of the background contributions from instrumental lines is
crucial at MeV energies for measuring the cosmic diffuse gamma-ray background
and for observing gamma-ray line emission in the interstellar medium or from
supernovae and their remnants. Procedures to determine the event rate from each
background isotope are described, and their average activity in spacecraft
materials over the first seven years of the mission is estimated.Comment: accepted for publication in A&A, 22 pages, 21 figure
High Energy gamma-rays From FR I Jets
Thanks to Hubble and Chandra telescopes, some of the large scale jets in
extragalactic radio sources are now being observed at optical and X-ray
frequencies. For the FR I objects the synchrotron nature of this emission is
surely established, although a lot of uncertainties - connected for example
with the particle acceleration processes involved - remain. In this paper we
study production of high energy gamma-rays in FR I kiloparsec-scale jets by
inverse-Compton emission of the synchrotron-emitting electrons. We consider
different origin of seed photons contributing to the inverse-Compton
scattering, including nuclear jet radiation as well as ambient, stellar and
circumstellar emission of the host galaxies. We discuss how future detections
or non-detections of the evaluated gamma-ray fluxes can provide constraints on
the unknown large scale jet parameters, i.e. the magnetic field intensity and
the jet Doppler factor. For the nearby sources Centaurus A and M 87, we find
measurable fluxes of TeV photons resulting from synchrotron self-Compton
process and from comptonisation of the galactic photon fields, respectively. In
the case of Centaurus A, we also find a relatively strong emission component
due to comptonisation of the nuclear blazar photons, which could be easily
observed by GLAST at energy ~10 GeV, providing important test for the
unification of FR I sources with BL Lac objects.Comment: 39 pages, 6 figures included. Modified version, accepted for
publication in Astrophysical Journa
- …