5,531 research outputs found
Some positive dependence notions, with applications in actuarial sciences.
The paper is devoted to the study of several notions of positive dependence among risks, namely association, linear positive quadrant dependence, positive orthant dependence and conditional increasingness in sequence. Various examples illustrate the usefulness of these notions in an actuarial context.Dependence; Applications; Actuarial; Science;
Does positive dependence between individual risks increase stop-loss premiums?.
Actuaries intuitively feel that positive correlations between individual risks reveal a more dangerous situation compared to independence. The purpose of this short note is to formalize this natural idea. Specifically, it is shown that the sum of risks exhibiting a weak form of dependence known as positive cumulative dependence is larger in convex order than the corresponding sum under the theoretical independence assumption.Dependence; Risk;
A note on the stop-loss preservin property of Wang's premium principle.
A desirable property for a premium principle is that it preserves stop-loss order. In this paper, we present a simple proof for the stop-loss preserving property of Wang's class of premium principles, in the case that the distribution functions involved have only finitely many crossing points.Principles; Distribution; Functions;
Long-lived protoplanetary disks in multiple systems: the VLA view of HD 98800
The conditions and evolution of protoplanetary disks in multiple systems can
be considerably different from those around single stars, which may have
important consequences for planet formation. We present Very Large Array (VLA)
8.8 mm (34 GHz) and 5 cm (6 GHz) observations of the quadruple system HD 98800,
which consists of two spectroscopic binary systems (Aa-Ab, Ba-Bb). The Ba-Bb
pair is surrounded by a circumbinary disk, usually assumed to be a debris disk
given its 10 Myr age and lack of near infrared excess. The VLA 8.8 mm
observations resolve the disk size (5-5.5 au) and its inner cavity (3
au) for the first time, making it one of the smallest disks known. Its small
size, large fractional luminosity, and millimeter spectral index consistent
with blackbody emission support the idea that HD 98800 B is a massive,
optically thick ring which may still retain significant amounts of gas. The
disk detection at 5 cm is compatible with free-free emission from photoionized
material. The diskless HD 98800 A component is also detected, showing partial
polarization at 5 cm compatible with non-thermal chromospheric activity. We
propose that tidal torques from Ba-Bb and A-B have stopped the viscous
evolution of the inner and outer disk radii, and the disk is evolving via mass
loss through photoevaporative winds. This scenario can explain the properties
and longevity of HD 98800 B as well as the lack of a disk around HD 98800 A,
suggesting that planet formation could have more time to proceed in multiple
systems than around single stars in certain system configurations.Comment: 14 pages, 4 figures, 3 tables; Submitted to ApJ May 14 2018; Accepted
to ApJ August 3 2018. This version fixes a mistake in the reported position
angle. The order of the figures has been changed to match that of the
references in the tex
Photospheric activity, rotation and magnetic interaction in LHS 6343 A
Context. The Kepler mission has recently discovered a brown dwarf companion
transiting one member of the M4V+M5V visual binary system LHS 6343 AB with an
orbital period of 12.71 days. Aims. The particular interest of this transiting
system lies in the synchronicity between the transits of the brown dwarf C
component and the main modulation observed in the light curve, which is assumed
to be caused by rotating starspots on the A component. We model the activity of
this star by deriving maps of the active regions that allow us to study stellar
rotation and the possible interaction with the brown dwarf companion. Methods.
An average transit profile was derived, and the photometric perturbations due
to spots occulted during transits are removed to derive more precise transit
parameters. We applied a maximum entropy spot model to fit the out-of-transit
optical modulation as observed by Kepler during an uninterrupted interval of
500 days. It assumes that stellar active regions consist of cool spots and
bright faculae whose visibility is modulated by stellar rotation. Results.
Thanks to the extended photometric time series, we refine the determination of
the transit parameters and find evidence of spots that are occulted by the
brown dwarf during its transits. The modelling of the out-of-transit light
curve of LHS 6343 A reveals several starspots rotating with a slightly longer
period than the orbital period of the brown dwarf, i.e., 13.13 +- 0.02 days. No
signature attributable to differential rotation is observed. We find evidence
of a persistent active longitude on the M dwarf preceding the sub- companion
point by 100 deg and lasting for at least 500 days. This can be relevant for
understanding how magnetic interaction works in low-mass binary and star-planet
systems.Comment: 14 pages, 16 figure
A new eclipsing binary system with a pulsating component detected by CoRoT
We report the discovery of CoRoT 102980178 (R.A.= 06:50:12.10, Dec.=
-02:41:21.8, J2000) an Algol-type eclipsing binary system with a pulsating
component (oEA). It was identified using a publicly available 55 day long
monochromatic lightcurve from the CoRoT initial run dataset (exoplanet field).
Eleven consecutive 1.26m deep total primary and the equal number of 0.25m deep
secondary eclipses (at phase 0.50) were observed. The following light elements
for the primary eclipse were derived: HJD_MinI= 2454139.0680 + 5.0548d x E. The
lightcurve modeling leads to a semidetached configuration with the photometric
mass ratio q=0.2 and orbital inclination i=85 deg. The out-of-eclipse
lightcurve shows ellipsoidal variability and positive O'Connell effect as well
as clear 0.01m pulsations with the dominating frequency of 2.75 c/d. The
pulsations disappear during the primary eclipses, which indicates the primary
(more massive) component to be the pulsating star. Careful frequency analysis
reveals the second independent pulsation frequency of 0.21 c/d and numerous
combinations of these frequencies with the binary orbital frequency and its
harmonics. On the basis of the CoRoT lightcurve and ground based multicolor
photometry, we favor classification of the pulsating component as a gamma
Doradus type variable, however, classification as an SPB star cannot be
excluded.Comment: 16 pages, 7 figures, 3 tables, accepted to Communications in
Asteroseismolog
Intercomparison of carbonate chemistry measurements on a cruise in northwestern European shelf seas
Four carbonate system variables were measured in surface waters during a cruise aimed at investigating ocean acidification impacts traversing northwestern European shelf seas in the summer of 2011. High-resolution surface water data were collected for partial pressure of carbon dioxide (pCO2; using two independent instruments) and pH using the total pH scale (pHT), in addition to discrete measurements of total alkalinity and dissolved inorganic carbon. We thus overdetermined the carbonate system (four measured variables, two degrees of freedom), which allowed us to evaluate the level of agreement between the variables on a cruise whose main aim was not intercomparison, and thus where conditions were more representative of normal working conditions. Calculations of carbonate system variables from other measurements generally compared well with direct observations of the same variables (Pearsonâs correlation coefficient always greater than or equal to 0.94; mean residuals were similar to the respective accuracies of the measurements). We therefore conclude that four of the independent data sets of carbonate chemistry variables were of high quality. A diurnal cycle with a maximum amplitude of 41 ÎŒatm was observed in the difference between the pCO2 values obtained by the two independent analytical pCO2 systems, and this was partly attributed to irregular seawater flows to the equilibrator and partly to biological activity inside the seawater supply and one of the equilibrators. We discuss how these issues can be addressed to improve carbonate chemistry data quality on future research cruises
Doppler-beaming in the Kepler light curve of LHS 6343 A
Context. Kepler observations revealed a brown dwarf eclipsing the M-type star
LHS 6343 A with a period of 12.71 days. In addition, an out-of-eclipse light
modulation with the same period and a relative semi-amplitude of 2 x 10^-4 was
observed showing an almost constant phase lag to the eclipses produced by the
brown dwarf. In a previous work, we concluded that this was due to the light
modulation induced by photospheric active regions in LHS 6343 A. Aims. In the
present work, we prove that most of the out-of-eclipse light modulation is
caused by the Doppler-beaming induced by the orbital motion of the primary
star. Methods. We introduce a model of the Doppler-beaming for an eccentric
orbit and also considered the ellipsoidal effect. The data were fitted using a
Bayesian approach implemented through a Monte Carlo Markov chain method. Model
residuals were analysed by searching for periodicities using a Lomb-Scargle
periodogram. Results. For the first seven quarters of Kepler observations and
the orbit previously derived from the radial velocity measurements, we show
that the light modulation of the system outside eclipses is dominated by the
Doppler-beaming effect. A period search performed on the residuals shows a
significant periodicity of 42.5 +- 3.2 days with a false-alarm probability of 5
x 10^-4, probably associated with the rotational modulation of the primary
component.Comment: 6 pages, 7 figure
Eclipsing binaries suitable for distance determination in the Andromeda galaxy
The Local Group galaxies constitute a fundamental step in the definition of
cosmic distance scale. Therefore, obtaining accurate distance determinations to
the galaxies in the Local Group, and notably to the Andromeda Galaxy (M31), is
essential to determining the age and evolution of the Universe. With this
ultimate goal in mind, we started a project to use eclipsing binaries as
distance indicators to M31. Eclipsing binaries have been proved to yield direct
and precise distances that are essentially assumption free. To do so,
high-quality photometric and spectroscopic data are needed. As a first step in
the project, broad band photometry (in Johnson B and V) has been obtained in a
region (34'x34') at the North-Eastern quadrant of the galaxy over 5 years. The
data, containing more than 250 observations per filter, have been reduced by
means of the so-called difference image analysis technique and the DAOPHOT
program. A catalog with 236238 objects with photometry in both B and V
passbands has been obtained. The catalog is the deepest (V<25.5 mag) obtained
so far in the studied region and contains 3964 identified variable stars, with
437 eclipsing binaries and 416 Cepheids. The most suitable eclipsing binary
candidates for distance determination have been selected according to their
brightness and from the modelling of the obtained light curves. The resulting
sample includes 24 targets with photometric errors around 0.01 mag. Detailed
analysis (including spectroscopy) of some 5-10 of these eclipsing systems
should result in a distance determination to M31 with a relative uncertainty of
2-3% and essentially free from systematic errors, thus representing the most
accurate and reliable determination to date.Comment: 12 pages, 9 figures; accepted for publication in A&A; see electronic
tables and full resolution images at
http://www.am.ub.es/~fvilarde/download/A+A
The initial-final mass relationship of white dwarfs in common proper motion pairs
A promising approach to decrease the uncertainties in the initial-final mass relationship, which is still poorly constrained, is to study white dwarfs for which external constraints are available, for instance, white dwarfs in common proper motion pairs (CPMPs). Important information of the white dwarf can be inferred from the study of the companion, since they were born at the same time and with the same initial chemical composition. In this contribution, we report new results obtained from spectroscopic observations of both members of several CPMPs composed of a F, G or K type star and a DA white dwarf
- âŠ