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Abstract 

Actuaries intuitively feel that positive correlations between individua.l risks 
reveal a more dangerous situation compared to independence. Tlw purposp 
of this short note is to formalize this natural idea. Specifically, it is showll 
that the sum of risks exhibiting a weak form of dependenc:e known as positive 
cumulative dependence is larger in convex order than the c:oITespondiIl~ sUln 

under the theoretic:al independence assumption. 
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1 Introduction 

The study of the impact of dependence among risks has become a major t.o­
pic in actuarial science nowadays; see e.g. Dhaene, Wang, Young and Goovaerts 
(2000), Goovaerts, Dhaene and De Schepper (2000), Kaas, Dhaene and Goovaerts 
(2000), Simon, Goovaerts and Dhaene (2000), Vyncke, Goovaerts and Dhaelw 
(2000) as well as the references therein. It has been recognized that tlw assump­
tion of mutual independence of risks is often violated in insurance practice. III 
many lines of business, the introduction 9f common shocks at the portfolio h!wl 
is needed to represent the effects of catastrophes hitting several (or a large HUIll­

ber of) policies simultaneously, like earthquakes, tornados, epidemic:s and so OIL 

Consequently, the risks in the individual model are certainly not indep<mdellt 
but merely depend on each other. 

Several notions of positive dependence were introduced in the literature to 
model the fact that large values of one of the components of a multivariate risk 
(Xl, X 2 , ... ,Xn ) tend to be associated with large values of t.he others. SmIle of 
these concepts appear to be relevant in actuarial science. For a review, see P.g. 
Scarsini and Shaked (1996) or Joe (1997). 

In this paper, we consider a weak form of positive dependence, kIH),WIl as 
positive cumulative dependence. This concept seems to have received lit.tle at­
tention until now, compared to the stronger notions of association or conditioIlal 
increasingness in sequence, for instance. As shown in Section 2, the positivI! c:u­
mulative dependence is particularly appealing for actuaries. In Section :3, we 
state our main result. Finally, in Section 4 an application is proposed. 

Let us briefly specify some notations. Henceforth, a non-negative random 
variable X with a finite expectation is called a risk. Further, IR denot.es the 
real line (-00, +00), 1R+ the half positive real line [0, +00) and IN the sd of 
the non-negative integers {O, 1,2, ... }. The symbol "=/ means "is equally 
distributed as". The risks X{, xi:, ... ,X;; represent independent versions of 
Xl, X 2 , ... ,Xn , i.e. (1) the random variables X {, Xi:, ... 'X,~ are mutually 
Independent and (ii) for any 'I = 1,2, ... , n, the random variables Xi a.nd 
Xi- are identically distributed. Furthermore, the risks X[i, xy, ... ,xi: n~-' 
present the comonotonic version of Xl> X 2 " .. ,Xn , i.e. Xl =(/ F]-l(u), X 2 =11 

F2- I (U), . . , ,Xn =d F;;l(U) where U denotes a random variable uniformly (lis­
tributed on the unit interval [0,1] and Fi- I is the quantile function associated 
to the distribution function Fi of Xi, i.e. 

Fi-l(p) = inf{x E IRjFi(X) ~ p}, 0 < p < 1. 

Given two risks X and Y, X is said to precede Y in the stop-loss onler, writtr'll 
as X ~sf Y, if E¢>(X) ::; E¢>(Y) holds for all the non-decreasing anel COllvex 

functions ¢> for which the expectations exist. It is worth mentioning that X -:!cst 
Y and EX = EY if, and only if, E¢>(X) ::; E¢>(Y) holds for all the wnvpx 
functions ¢> for which the expectations exist. 

1 



2 Positive cumulative dependence 

As far as random couples are concerned (n = 2), positive quadrant ciepenc\PllcP 
(PQD, in short) has been extensively used in actuarial scienees, e.g. by Dhaellf' 
and Goovaerts (1996) and Denuit, Lefevre and Mesfioui (1999). Let. llH recall 
that two risks Xl and X 2 are said to be PQD if the inequality 

(2.1) 

holds for any reals Xl, X2 E 1R+ Considering (2.1), the int.uitive mealliug of 
PQD is clear: if Xl and X 2 are PQD then the probability t.hat thev hoth 
assume "large" values is greater than if they were independent. It iH known 
from Dhaene and Goovaerts (1996, Theorem 2) that 

(2.2) 

Our aim is to extend the stochastic inequality (2.2) to the ease of n riHkH 
XI, X 2 , . .. , X n . For this purpose, we need to introduce a positiv(~ dependellC!' 
notion involving more than two risks. 

For I C {1, 2, ... , n}, let us define Sy as the sum of t.he X;'H whoHc iurkx iH 
in I, i.e. Sy = LiEyXi. The positive cumulative dependence (PCD, in short) 
is defined as follows: the risks Xl, X 2 , . .. , Xn are PCD if for any I and .i !j I, 
Sy and Xj are PQD. This weak form of dependence extends the bivariate PQD 
to arbitrary dimension and keeps the intuitive meaning of PQD: if the X.;'s are 
PCD, the probability that Sy and Xj both assume "large" values is greater than 
if the X;'s were independent. In particular, the inequality 

holds true for any j = 1,2, ... , n with P[Xi > t:lJ > 0 provicif)d all tIl(' riskH 
XI, X 2 , . .• , Xn are PCD, whence it follows that 

This means that the knowledge that one of the individual risks, Xj say, is la.rge 
(i.e. Xj > t2 for some t2 E 1R+) increases the probability that. the aggn~gat.e 
claim produced by the n - 1 remaining risks of the portfolio is also large. as 
well as the stop-loss premiums relating to them. 

3 Main result 

Let us now prove the following result which enhanees the int.erest of PCD in the' 
study of dependent. risks. More preeisely, we provide hereaft.e)r a lIlultivariat.e' 
generalization of (2.2). 
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Theorem 3.1. Let us consider peD risks Xl, X 2 , . .. ,Xn with rnaryinal dis­
tribution junctions FI , F2 , . •. ,Fn. Then, we have 

xt + xf + ... + X;;- :5sl Xl + X 2 + ... + Xn :58£ xi! + X~l + ... + X//. 

Proof. The second stop-loss inequality is true in general, for risks XI. X 2 , ... ,Xu 
with distribution function F I , F2 , .•• , P,,; see, e.g., Dhaene, Wang, Young awl 
Goovaerts (2000). Let us prove the first stop-loss inequality. Without loss of 
generality, the random vectors (xt, Xf, ... , X;;-) and (Xl, X 2 , ... , Xn) lIlay be 
considered independent. Now, proceed by induction. Finlt, xt :5st XI trivially 
holds. Now, assume that 

xt + xf + ... + xt :5sl Xl + X 2 + ... + X k 

holds true for k = 1,2, ... , n-l. Then, by the closure of :5sf undf~r convolution, 
the latter stochastic: inequality yields 

xt + xf + ... + xLI + X;;- :5sf. Xl + X2 + ... + X n- I + X,~. eU) 

Now, since the X;'s are PCD, Xn and Xl + X 2 + ... + X n- I are PQD, and we 
get 

Combining (3.1) and (3.2) yields the announced result by the transitivity pro­
perty of :5s'. D 

Note that the conelusions of Theorem 3.1 a jO'ftio7"'i hold when the Xi'S iln~ 
assoc:iated, linear positive quadrant dependent or c:onditionally increasill)'; ill 
sequence as these positive dependence notions imply PCD (see Joe (199T) for 
further details about these concepts). Therefore, Theorem 3.1 c:an be applied 
in many situations. As a few examples, let us mention the dass of counting 
distributions introduc:ed by Ambagaspityia (1998) or the models rec:ently defined 
by Cossette and Marceau (2000); for more details, see Denuit, Dhaene and Ribas 
(1999). 

From the above result, once the marginal distributions of the X;'s are fixed, 
the best lower and upper bounds in the :5srsense on the aggregate claims Xl + 
X 2 + ... + Xn of PCD risks are provided by xt + Xf + ... + Xr~ and X:: + 
X!j + ... + X;:, respectively. Therefore, any risk-averse dec:ision-maker will pnJc'l" 
Xt- +Xf+··· +X;;- over Xl +X2 + ... +Xn when the risks Xl, X 2 ,'" ,Xu are 
PCD. This c:onclusion holds both in Von Neumann and Morgenstern expc~etccl 
utility theory, as well as in Yaari's dual theory of choic:e under risk. It also follows 
from Theorem 3.1 that making the assumption of mutual independence for reD 
risks Xl, X 2 , ... , Xn leads to an underestimation of the stop-loss prcmillllls. 

For PCD risks, the safest dependence structure is provided by mutual in­
dependence, for fixed marginals. When the risks are not known to be reD, 
the safest dependence struc:ture does not always exist; see DhaeIH~ and DC~ll11it 
(1999) for more details. 
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4 An application to premium calculation prin­
ciples 

Let us consider a premium calculation principle H[.], that assigns a premiulIl 
amount H[X] to any risk X. We assume that the distributiou function of X 
completely determines the premium for X. Assume further that H[.] pn~~el'W~ 
the stop-loss order, i.e. given two risks X and Y, 

X ~s£ Y =} H[X] ::; H[Y]. 

Consider PCD risks Xl, X 2 ,' •. , Xn. The stop-lofls preserving propcrtv to­
gether with Theorem 3.1 yields 

(4.1) 

The inequality above states that for a stop-loss preserving premiuIIl principk 
the premium of a sum of PCD risks is maximal if the risks are comonotoui<: 
and minimal if the risks are mutually independent. We remark that the sewud 
inequality holds in general for all risks Xl, X 2 , ... , Xn (not necessarily PCD); 
see e.g. Wang and Dhaene (1998). From (4.1), we find that if a. premiulll 
principle preserves stop-loss order and is additive for independent risks, then it 
is super-additive for PCD risks. This result is a generalization of the bivariate 
case considered in Wang and Dhaene (1998). 
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