101 research outputs found

    Hamming distance kernelisation via topological quantum computation

    Get PDF
    We present a novel approach to computing Hamming distance and its kernelisation within Topological Quantum Computation. This approach is based on an encoding of two binary strings into a topological Hilbert space, whose inner product yields a natural Hamming distance kernel on the two strings. Kernelisation forges a link with the field of Machine Learning, particularly in relation to binary classifiers such as the Support Vector Machine (SVM). This makes our approach of potential interest to the quantum machine learning community

    VLT/NACO astrometry of the HR8799 planetary system. L'-band observations of the three outer planets

    Full text link
    HR8799 is so far the only directly imaged multiple exoplanet system. The orbital configuration would, if better known, provide valuable insight into the formation and dynamical evolution of wide-orbit planetary systems. We present L'-band observations of the HR8799 system obtained with NACO at VLT, adding to the astrometric monitoring of the planets HR8799b, c and d. We investigate how well the two simple cases of (i) a circular orbit and (ii) a face-on orbit fit the astrometric data for HR8799d over a total time baseline of ~2 years. The results indicate that the orbit of HR8799d is inclined with respect to our line of sight, and suggest that the orbit is slightly eccentric or non-coplanar with the outer planets and debris disk.Comment: 5 pages, 4 figures, 1 table, accepted for publication in A\&A. Updated version includes minor changes made in the proof

    On insertion-deletion systems over relational words

    Full text link
    We introduce a new notion of a relational word as a finite totally ordered set of positions endowed with three binary relations that describe which positions are labeled by equal data, by unequal data and those having an undefined relation between their labels. We define the operations of insertion and deletion on relational words generalizing corresponding operations on strings. We prove that the transitive and reflexive closure of these operations has a decidable membership problem for the case of short insertion-deletion rules (of size two/three and three/two). At the same time, we show that in the general case such systems can produce a coding of any recursively enumerable language leading to undecidabilty of reachability questions.Comment: 24 pages, 8 figure

    The cold origin of the warm dust around epsilon Eridani

    Full text link
    Context: The K2V star eps Eri hosts one known inner planet, an outer Kuiper belt analog, and an inner disk of warm dust. Spitzer/IRS measurements indicate that the warm dust is present at distances as close as a few AU from the star. Its origin is puzzling, since an "asteroid belt" that could produce this dust would be unstable because of the known inner planet. Aims: Here we test the hypothesis that the observed warm dust is generated by collisions in the outer belt and is transported inward by Poynting-Robertson (P-R) drag and strong stellar winds. Methods: We simulated a steady-state distribution of dust particles outside 10AU with a collisional code and in the inner region (r<10AU) with single-particle numerical integrations. By assuming homogeneous spherical dust grains composed of water ice and silicate, we calculated the thermal emission of the dust and compared it with observations. We investigated two different orbital configurations for the inner planet inferred from RV measurements, one with a highly eccentric orbit of e=0.7 and another one with a moderate one of e=0.25. We also produced a simulation without a planet. Results: Our models can reproduce the shape and magnitude of the observed SED from mid-IR to sub-mm wavelengths, as well as the Spitzer/MIPS radial brightness profiles. The best-fit dust composition includes both ice and silicates. The results are similar for the two possible planetary orbits and without a planet. Conclusions: The observed warm dust in the system can indeed stem from the outer belt and be transported inward by P-R and stellar wind drag. The inner planet has little effect on the distribution of dust, so that the planetary orbit could not be constrained. Reasonable agreement between the model and observations can only be achieved by relaxing the assumption of purely silicate dust and assuming a mixture of silicate and ice in comparable amounts.Comment: 9 pages, 9 figures, abstract abridge

    Quantum Holonomy in Three-dimensional General Covariant Field Theory and Link Invariant

    Full text link
    We consider quantum holonomy of some three-dimensional general covariant non-Abelian field theory in Landau gauge and confirm a previous result partially proven. We show that quantum holonomy retains metric independence after explicit gauge fixing and hence possesses the topological property of a link invariant. We examine the generalized quantum holonomy defined on a multi-component link and discuss its relation to a polynomial for the link.Comment: RevTex, 12 pages. The metric independence of path integral measure is justified and the case of multi-component link is discussed in detail. To be published in Physical Review

    On the relation between the connection and the loop representation of quantum gravity

    Get PDF
    Using Penrose binor calculus for SU(2)SU(2) (SL(2,C)SL(2,C)) tensor expressions, a graphical method for the connection representation of Euclidean Quantum Gravity (real connection) is constructed. It is explicitly shown that: {\it (i)} the recently proposed scalar product in the loop-representation coincide with the Ashtekar-Lewandoski cylindrical measure in the space of connections; {\it (ii)} it is possible to establish a correspondence between the operators in the connection representation and those in the loop representation. The construction is based on embedded spin network, the Penrose graphical method of SU(2)SU(2) calculus, and the existence of a generalized measure on the space of connections modulo gauge transformations.Comment: 19 pages, ioplppt.sty and epsfig.st

    The Architectural Design Rules of Solar Systems based on the New Perspective

    Full text link
    On the basis of the Lunar Laser Ranging Data released by NASA on the Silver Jubilee Celebration of Man Landing on Moon on 21st July 1969-1994, theoretical formulation of Earth-Moon tidal interaction was carried out and Planetary Satellite Dynamics was established. It was found that this mathematical analysis could as well be applied to Star and Planets system and since every star could potentially contain an extra-solar system, hence we have a large ensemble of exoplanets to test our new perspective on the birth and evolution of solar systems. Till date 403 exoplanets have been discovered in 390 extra-solar systems. I have taken 12 single planet systems, 4 Brown Dwarf - Star systems and 2 Brown Dwarf pairs. Following architectural design rules are corroborated through this study of exoplanets. All planets are born at inner Clarke Orbit what we refer to as inner geo-synchronous orbit in case of Earth-Moon System. By any perturbative force such as cosmic particles or radiation pressure, the planet gets tipped long of aG1 or short of aG1. Here aG1 is inner Clarke Orbit. The exoplanet can either be launched on death spiral as CLOSE HOT JUPITERS or can be launched on an expanding spiral path as the planets in our Solar System are. It was also found that if the exo-planet are significant fraction of the host star then those exo-planets rapidly migrate from aG1 to aG2 and have very short Time Constant of Evolution as Brown Dwarfs have. This vindicates our basic premise that planets are always born at inner Clarke Orbit. This study vindicates the design rules which had been postulated at 35th COSPAR Scientific Assembly in 2004 at Paris, France, under the title ,New Perspective on the Birth & Evolution of Solar Systems.Comment: This paper has been reported to Earth,Moon and Planets Journal as MOON-S-09-0007

    Thermodynamics and Topology of Disordered Systems: Statistics of the Random Knot Diagrams on Finite Lattice

    Full text link
    The statistical properties of random lattice knots, the topology of which is determined by the algebraic topological Jones-Kauffman invariants was studied by analytical and numerical methods. The Kauffman polynomial invariant of a random knot diagram was represented by a partition function of the Potts model with a random configuration of ferro- and antiferromagnetic bonds, which allowed the probability distribution of the random dense knots on a flat square lattice over topological classes to be studied. A topological class is characterized by the highest power of the Kauffman polynomial invariant and interpreted as the free energy of a q-component Potts spin system for q->infinity. It is shown that the highest power of the Kauffman invariant is correlated with the minimum energy of the corresponding Potts spin system. The probability of the lattice knot distribution over topological classes was studied by the method of transfer matrices, depending on the type of local junctions and the size of the flat knot diagram. The obtained results are compared to the probability distribution of the minimum energy of a Potts system with random ferro- and antiferromagnetic bonds.Comment: 37 pages, latex-revtex (new version: misprints removed, references added

    The scattering of small bodies in planetary systems: constraints on the possible orbits of cometary material

    Full text link
    The scattering of small bodies by planets is an important dynamical process in planetary systems. We present an analytical model to describe this process using the simplifying assumption that each particle's dynamics is dominated by a single planet at a time. As such the scattering process can be considered as a series of three body problems during each of which the Tisserand parameter with respect to the relevant planet is conserved. This constrains the orbital parameter space into which a particle can be scattered. Such arguments have previously been applied to the process by which comets are scattered to the inner Solar System from the Kuiper belt. Our analysis generalises this for an arbitrary planetary system. For particles scattered from an outer belt directly along a chain of planets, based on the initial value of the Tisserand parameter, we find that it is possible to (i) determine which planets can eject the particles from the system, (ii) define a minimum stellar distance to which particles can be scattered, and (iii) constrain range of particle inclinations (and hence the disc height) at different distances. Applying this to the Solar System, we determine that the planets are close to optimally separated for scattering particles between them. Concerning warm dust found around stars that also have Kuiper belt analogues, we show that, if there is to be a dynamical link between the outer and inner regions, then certain architectures for the intervening planetary system are incapable of producing the observations. Furthermore we show that for certain planetary systems, comets can be scattered from an outer belt, or with fewer constraints, from an Oort cloud analogue, onto star-grazing orbits, in support of a planetary origin to the metal pollution and dustiness of some nearby white dwarfs

    Barrier and internal wave contributions to the quantum probability density and flux in light heavy-ion elastic scattering

    Get PDF
    We investigate the properties of the optical model wave function for light heavy-ion systems where absorption is incomplete, such as α+40\alpha + ^{40}Ca and α+16\alpha + ^{16}O around 30 MeV incident energy. Strong focusing effects are predicted to occur well inside the nucleus, where the probability density can reach values much higher than that of the incident wave. This focusing is shown to be correlated with the presence at back angles of a strong enhancement in the elastic cross section, the so-called ALAS (anomalous large angle scattering) phenomenon; this is substantiated by calculations of the quantum probability flux and of classical trajectories. To clarify this mechanism, we decompose the scattering wave function and the associated probability flux into their barrier and internal wave contributions within a fully quantal calculation. Finally, a calculation of the divergence of the quantum flux shows that when absorption is incomplete, the focal region gives a sizeable contribution to nonelastic processes.Comment: 16 pages, 15 figures. RevTeX file. To appear in Phys. Rev. C. The figures are only available via anonynous FTP on ftp://umhsp02.umh.ac.be/pub/ftp_pnt/figscat
    corecore