8,563 research outputs found

    Strong and weak thermalization of infinite non-integrable quantum systems

    Full text link
    When a non-integrable system evolves out of equilibrium for a long time, local observables are expected to attain stationary expectation values, independent of the details of the initial state. However, intriguing experimental results with ultracold gases have shown no thermalization in non-integrable settings, triggering an intense theoretical effort to decide the question. Here we show that the phenomenology of thermalization in a quantum system is much richer than its classical counterpart. Using a new numerical technique, we identify two distinct thermalization regimes, strong and weak, occurring for different initial states. Strong thermalization, intrinsically quantum, happens when instantaneous local expectation values converge to the thermal ones. Weak thermalization, well-known in classical systems, happens when local expectation values converge to the thermal ones only after time averaging. Remarkably, we find a third group of states showing no thermalization, neither strong nor weak, to the time scales one can reliably simulate.Comment: 12 pages, 21 figures, including additional materia

    In vitro modeling of dysfunctional glial cells in neurodegenerative diseases using human pluripotent stem cells

    Get PDF
    Most neurodegenerative diseases are characterized by a complex and mostly still unresolved pathology. This fact, together with the lack of reliable models, have precluded the development of effective therapies counteracting the disease progression. In the past few years, several studies have evidenced that lack of proper functionality of glial cells (astrocytes, microglia and oligodendrocytes) has a key role in the pathology of several neurodegenerative conditions including Alzheimer´s disease, amyotrophic lateral sclerosis and multiple sclerosis among others. However, this glial dysfunction is poorly modelled by available animal models, and we hypothesize that patientderived cells can serve as a better platform where to study this glial dysfunction. In this sense, human pluripotent stem cells (hPSCs) has revolutionized the field allowing the generation of disease-relevant neural cell types that can be used for disease modelling, drug screening and, possibly, cell transplantation purposes. In the case of the generation of oligodendrocytes (OLs) from hPSCs, we have developed a fast and robust protocol to generate surface antigen O4-positive (O4+) and myelin basic protein-positive OLs from hPSCs in only 22 days, including from patients with multiple sclerosis or amyotrophic lateral sclerosis. The generated cells resemble primary human OLs at the transcriptome level and can myelinate neurons in vivo. Using in vitro OLneuron co-cultures, effective myelination of neurons can also be demonstrated. This platform is being translated as well to the generation of the other glial cell types, allowing the derivation of patient-specific glial cells where to model disease-specific dysfunction. This methodology can be used for elucidating pathogenic pathways associated with neurodegeneration and to identify therapeutic targets susceptible of drug modulation, contributing to the development of novel and effective drugs for these devastating disorders.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. Supported by PI18/01557 (to AG) and P18/1556 (to JV) grants from ISCiii of Spain co-financed by FEDER funds from European Union, and PI-0276-2018 grant (to JAGL) from Consejeria de Salud of Junta de Andalucia. JAGL held a postdoctoral contract from the I Research Plan Propio of the University of Malaga. CV and KE were supported by IWT-SBO-150031-iPSCAF and the Thierry Lathran Foundation grant – ALS-OL, and KN by FWO1166518

    Numerical Simulation of Nano Scanning in Intermittent-Contact Mode AFM under Q control

    Full text link
    We investigate nano scanning in tapping mode atomic force microscopy (AFM) under quality (Q) control via numerical simulations performed in SIMULINK. We focus on the simulation of whole scan process rather than the simulation of cantilever dynamics and the force interactions between the probe tip and the surface alone, as in most of the earlier numerical studies. This enables us to quantify the scan performance under Q control for different scan settings. Using the numerical simulations, we first investigate the effect of elastic modulus of sample (relative to the substrate surface) and probe stiffness on the scan results. Our numerical simulations show that scanning in attractive regime using soft cantilevers with high Qeff results in a better image quality. We, then demonstrate the trade-off in setting the effective Q factor (Qeff) of the probe in Q control: low values of Qeff cause an increase in tapping forces while higher ones limit the maximum achievable scan speed due to the slow response of the cantilever to the rapid changes in surface profile. Finally, we show that it is possible to achieve higher scan speeds without causing an increase in the tapping forces using adaptive Q control (AQC), in which the Q factor of the probe is changed instantaneously depending on the magnitude of the error signal in oscillation amplitude. The scan performance of AQC is quantitatively compared to that of standard Q control using iso-error curves obtained from numerical simulations first and then the results are validated through scan experiments performed using a physical set-up

    Longitudinal Study of Total and Pathogenic Vibrio parahaemolyticus (tdh+ and/or trh+) in Two Natural Extraction Areas of Mytilus chilensis in Southern Chile

    Get PDF
    Vibrio parahaemolyticus is the leading cause of seafood-associated bacterial gastroenteritis worldwide. Although different studies have focused on its pattern of variation over time, knowledge about the environmental factors driving the dynamics of this pathogen, within the Chilean territory, is still lacking. This study determined the prevalence of total and pathogenic V. parahaemolyticus strains (tdh and/or trh genes) in mussels (Mytilus chilensis) collected from two natural growing areas between 2017 and 2018, using selective agar and PCR analysis. V. parahaemolyticus was detected in 45.6% (93/204) of pooled samples from the Valdivia River Estuary. The pathogenic strains carrying the tdh and/or trh gene were detected in 11.8% (24/204): tdh in 9.8% (20/204), trh in 0.5% (1/204), and 1.5% (3/204) presented both genes. In Reloncaví Fjord, V. parahaemolyticus was detected in 14.4% (30/209) of the samples, pathogenic V. parahaemolyticus carrying the trh gene was detected in 0.5% (1/209) of the samples, while the tdh gene was not detected in the samples from this area. The total count of mauve-purple colonies typical of V. parahaemolyticus on CHROMagar was positively associated by multivariate analysis with area, water temperature, and salinity. Similarly, V. parahaemolyticus detection rates by PCR had a positive correlation with the area and water temperature. The chances of detecting total V. parahaemolyticus in the Valdivia River Estuary are significantly higher than in the Reloncaví Fjord, but inversely, during spring-summer months, the interaction factor between the area and temperature indicated that the chances of detecting V. parahaemolyticus are higher in the Reloncaví Fjord. Interestingly, this period coincides with the season when commercial and natural-growing shellfish are harvested. On the other hand, pathogenic V. parahaemolyticus tdh+ was significantly correlated with an increase of water temperature. These environmental parameters could be used to trigger a warning on potential hazard, which would influence human health and economic losses in aquaculture systems.

    Worldwide impact of economic cycles on suicide trends over 3 decades: Differences according to level of development. A mixed effect model study

    Get PDF
    Objectives: To investigate the trends and correlations of gross domestic product (GDP) adjusted for purchasing power parity (PPP) per capita on suicide rates in 10 WHO regions during the past 30 years. Design: Analyses of databases of PPP-adjusted GDP per capita and suicide rates. Countries were grouped according to the Global Burden of Disease regional classification system. Data sources: World Bank’s official website and WHO’s mortality database. Statistical analyses: After graphically displaying PPP-adjusted GDP per capita and suicide rates, mixed effect models were used for representing and analysing clustered data. Results: Three different groups of countries, based on the correlation between the PPP-adjusted GDP per capita and suicide rates, are reported: (1) positive correlation: developing (lower middle and upper middle income) Latin-American and Caribbean countries, developing countries in the South East Asian Region including India, some countries in the Western Pacific Region (such as China and South Korea) and high-income Asian countries, including Japan; (2) negative correlation: high-income and developing European countries, Canada, Australia and New Zealand and (3) no correlation was found in an African country. Conclusions: PPP-adjusted GDP per capita may offer a simple measure for designing the type of preventive interventions aimed at lowering suicide rates that can be used across countries. Public health interventions might be more suitable for developing countries. In high-income countries, however, preventive measures based on the medical model might prove more usefulAll authors have completed the Unified Competing Interest form. Dr. Blasco-Fontecilla acknowledges the Spanish Ministry of Health (Rio Hortega CMO8/00170; SAF2010-21849), Alicia Koplowitz Foundation and Conchita Rabago Foundation for funding his post-doctoral stage at CHRU, Montpellier, France

    Decoherence and relaxation in the interacting quantum dot system

    Full text link
    In this paper we study the low temperature kinetics of the electrons in the system composed of a quantum dot connected to two leads by solving the equation of motion. The decoherence and the relaxation of the system caused by the gate voltage noise and electron-phonon scattering are investigated. In order to take account of the strong correlation of the electrons in this system, the quasi-exact wave functions are calculated using an improved matrix product states algorithm. This algorithm enables us to calculate the wave functions of the ground state and the low lying excited states with satisfied accuracy and thus enables us to study the kinetics of the system more effectively. It is found that although both of these two mechanisms are proportional to the electron number operator in the dot, the kinetics are quite different. The noise induced decoherence is much more effective than the energy relaxation, while the energy relaxation and decoherence time are of the same order for the electron-phonon scattering. Moreover, the noise induced decoherence increases with the lowering of the dot level, but the relaxation and decoherence due to the electron-phonon scattering decrease.Comment: Minor revision. Add journal referenc

    Quantum kinetic Ising models

    Full text link
    We introduce a quantum generalization of classical kinetic Ising models, described by a certain class of quantum many body master equations. Similarly to kinetic Ising models with detailed balance that are equivalent to certain Hamiltonian systems, our models reduce to a set of Hamiltonian systems determining the dynamics of the elements of the many body density matrix. The ground states of these Hamiltonians are well described by matrix product, or pair entangled projected states. We discuss critical properties of such Hamiltonians, as well as entanglement properties of their low energy states.Comment: 20 pages, 4 figures, minor improvements, accepted in New Journal of Physic

    Escoliosis congénitas causadas por hemivertebras

    Get PDF
    Presentamos un estudio retrospectivo de 26 pacientes diagnosticados de escoliosis congénitas causadas por hemivertebras, liemos analizado la evolución de las curvas según el tipo de hemivértebra, su localización y el tratamiento recibido. Se han obtenido los peores resultados en las niñas, cuando el diagnóstico se realizó después de los 10 años de edad, en las curvas localizadas en la región toracolumbar, en las hemivértebras múltiples y, dentro de ellas, en las unilaterales segmentadas no adyacentes y en los pacientes tratados ortopédicamente.A retrospective study of 26 patients with congenital scoliosis due to hemivertebra was conducted. Curve progression was analysed regarding the type of hemivertebra, its localization, and the applied treatment. The worst results were found in girls, in cases who were diagnosed with more than to years of age, in thoraco-lumbar curves, in multiple hemivertebra, especially in non-adjacent segmented unilateral hemivertebra and, finally, in patients treated with orthopaedic methods

    Formal analytical solutions for the Gross-Pitaevskii equation

    Full text link
    Considering the Gross-Pitaevskii integral equation we are able to formally obtain an analytical solution for the order parameter Φ(x)\Phi (x) and for the chemical potential μ\mu as a function of a unique dimensionless non-linear parameter Λ\Lambda . We report solutions for different range of values for the repulsive and the attractive non-linear interactions in the condensate. Also, we study a bright soliton-like variational solution for the order parameter for positive and negative values of Λ\Lambda . Introducing an accumulated error function we have performed a quantitative analysis with other well-established methods as: the perturbation theory, the Thomas-Fermi approximation, and the numerical solution. This study gives a very useful result establishing the universal range of the Λ\Lambda -values where each solution can be easily implemented. In particular we showed that for Λ<9\Lambda <-9, the bright soliton function reproduces the exact solution of GPE wave function.Comment: 8 figure

    Spontaneous Cardiomyocyte Differentiation From Adipose Tissue Stroma Cells

    Get PDF
    Cardiomyocyte regeneration is limited in adult life. Thus, the identification of a putative source of cardiomyocyte progenitors is of great interest to provide a usable model in vitro and new perspective in regenerative therapy. As adipose tissues were recently demonstrated to contain pluripotent stem cells, the emergence of cardiomyocyte phenotype from adipose-derived cells was investigated. We demonstrated that rare beating cells with cardiomyocyte features could be identified after culture of adipose stroma cells without addition of 5-azacytidine. The cardiomyocyte phenotype was first identified by morphological observation, confirmed with expression of specific cardiac markers, immunocytochemistry staining, and ultrastructural analysis, revealing the presence of ventricle- and atrial-like cells. Electrophysiological studies performed on early culture revealed a pacemaker activity of the cells. Finally, functional studies showed that adrenergic agonist stimulated the beating rate whereas cholinergic agonist decreased it. Taken together, this study demonstrated that functional cardiomyocyte- like cells could be directly obtained from adipose tissue. According to the large amount of this tissue in adult mammal, it could represent a useful source of cardiomyocyte progenitors.Garcia Verdugo, Jose Manuel, [email protected]
    corecore